(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
cond(true, x, y) → cond(gr(x, y), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1), P(z0))
GR(0, z0) → c1
GR(s(z0), 0) → c2
GR(s(z0), s(z1)) → c3(GR(z0, z1))
P(0) → c4
P(s(z0)) → c5
S tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1), P(z0))
GR(0, z0) → c1
GR(s(z0), 0) → c2
GR(s(z0), s(z1)) → c3(GR(z0, z1))
P(0) → c4
P(s(z0)) → c5
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR, P
Compound Symbols:
c, c1, c2, c3, c4, c5
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
P(s(z0)) → c5
GR(0, z0) → c1
P(0) → c4
GR(s(z0), 0) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
S tuples:
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1), P(z0))
GR(s(z0), s(z1)) → c3(GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c3
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), z1)
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1))
K tuples:none
Defined Rule Symbols:
cond, gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
cond(true, z0, z1) → cond(gr(z0, z1), p(z0), z1)
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, z0, z1) → c(COND(gr(z0, z1), p(z0), z1), GR(z0, z1))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
z0,
z1) →
c(
COND(
gr(
z0,
z1),
p(
z0),
z1),
GR(
z0,
z1)) by
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), z0), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), z0), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, 0, z0) → c(COND(false, p(0), z0), GR(0, z0))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0, z0) → c(COND(false, p(0), z0), GR(0, z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1), GR(0, x1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(15) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
K tuples:none
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
x1) →
c(
COND(
gr(
s(
z0),
x1),
z0,
x1),
GR(
s(
z0),
x1)) by
COND(true, s(z0), 0) → c(COND(true, z0, 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), 0) → c(COND(true, z0, 0), GR(s(z0), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), p(s(z0)), s(z1)), GR(s(z0), s(z1)))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
s(
z1)) →
c(
COND(
gr(
z0,
z1),
p(
s(
z0)),
s(
z1)),
GR(
s(
z0),
s(
z1))) by
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(x1)), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(z0)), GR(s(0), s(z0)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(z0)), GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(x1)), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, p(s(0)), s(z0)), GR(s(0), s(z0)))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(25) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(x1)), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = [1] + x3
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [1]
POL(p(x1)) = 0
POL(s(x1)) = [1]
POL(true) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(x1)) → c(COND(gr(z0, x1), z0, s(x1)), GR(s(z0), s(x1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(29) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, 0, x1) → c(COND(gr(0, x1), 0, x1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
0,
x1) →
c(
COND(
gr(
0,
x1),
0,
x1)) by
COND(true, 0, z0) → c(COND(false, 0, z0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c(COND(false, 0, z0))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, 0, z0) → c(COND(false, 0, z0))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(33) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, 0, z0) → c
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(35) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, 0, z0) → c
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = [1]
POL(GR(x1, x2)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = 0
POL(s(x1)) = 0
POL(true) = 0
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, p(s(z0)), 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, 0, z0) → c
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
0) →
c(
COND(
true,
p(
s(
z0)),
0)) by
COND(true, s(z0), 0) → c(COND(true, z0, 0))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, 0, z0) → c
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
K tuples:
COND(true, s(z0), x1) → c(COND(gr(s(z0), x1), z0, x1), GR(s(z0), x1))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, 0, z0) → c
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c, c
(39) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, 0, z0) → c
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(41) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(z0), 0) → c(COND(true, z0, 0))
We considered the (Usable) Rules:
gr(0, z0) → false
p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x1 + x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [1]
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
s(
z1)) →
c(
COND(
gr(
z0,
z1),
z0,
s(
z1)),
GR(
s(
z0),
s(
z1))) by
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, 0, s(z0)), GR(s(0), s(z0)))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, 0, s(z0)), GR(s(0), s(z0)))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(45) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(47) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
z0),
s(
x1)) →
c(
COND(
gr(
z0,
x1),
z0,
s(
x1)),
GR(
s(
z0),
s(
x1))) by
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(COND(false, 0, s(z0)), GR(s(0), s(z0)))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(0), s(z0)) → c(COND(false, 0, s(z0)), GR(s(0), s(z0)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(49) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(0)) → c(COND(true, p(s(s(z0))), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(51) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0)),
s(
0)) →
c(
COND(
true,
p(
s(
s(
z0))),
s(
0)),
GR(
s(
s(
z0)),
s(
0))) by
COND(true, s(s(x0)), s(0)) → c(COND(true, s(x0), s(0)), GR(s(s(x0)), s(0)))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(x0)), s(0)) → c(COND(true, s(x0), s(0)), GR(s(s(x0)), s(0)))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(53) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(COND(x1, x2, x3)) = [2]x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), p(s(s(z0))), s(s(z1))), GR(s(s(z0)), s(s(z1))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(55) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
COND(
true,
s(
s(
z0)),
s(
s(
z1))) →
c(
COND(
gr(
z0,
z1),
p(
s(
s(
z0))),
s(
s(
z1))),
GR(
s(
s(
z0)),
s(
s(
z1)))) by
COND(true, s(s(x0)), s(s(x1))) → c(COND(gr(x0, x1), s(x0), s(s(x1))), GR(s(s(x0)), s(s(x1))))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(COND(false, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(COND(false, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(x0)), s(s(x1))) → c(COND(gr(x0, x1), s(x0), s(s(x1))), GR(s(s(x0)), s(s(x1))))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(COND(false, p(s(s(0))), s(s(z0))), GR(s(s(0)), s(s(z0))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(57) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(x0)), s(s(x1))) → c(COND(gr(x0, x1), s(x0), s(s(x1))), GR(s(s(x0)), s(s(x1))))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(59) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = [2] + [3]x3
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [1]
POL(gr(x1, x2)) = [2]
POL(p(x1)) = 0
POL(s(x1)) = [2]
POL(true) = [1]
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(x0)), s(s(x1))) → c(COND(gr(x0, x1), s(x0), s(s(x1))), GR(s(s(x0)), s(s(x1))))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(61) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
We considered the (Usable) Rules:
gr(0, z0) → false
p(s(z0)) → z0
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2, x3)) = [1] + x1 + x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = [1]
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [1]
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
S tuples:
GR(s(z0), s(z1)) → c3(GR(z0, z1))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
GR, COND
Compound Symbols:
c3, c, c
(63) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
GR(
s(
z0),
s(
z1)) →
c3(
GR(
z0,
z1)) by
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
S tuples:
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
COND(true, s(z0), s(z1)) → c(COND(gr(z0, z1), z0, s(z1)), GR(s(z0), s(z1)))
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(65) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
COND(true, s(0), s(z0)) → c(GR(s(0), s(z0)))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
S tuples:
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)), GR(s(s(z0)), s(0)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(67) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
S tuples:
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(69) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
COND(
true,
s(
z0),
0) →
c(
COND(
true,
z0,
0)) by
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
S tuples:
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(71) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, p(s(s(s(z0)))), s(s(0))), GR(s(s(s(z0))), s(s(0)))) by COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
S tuples:
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(73) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
We considered the (Usable) Rules:
p(s(z0)) → z0
And the Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(COND(x1, x2, x3)) = x2
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = 0
POL(gr(x1, x2)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
S tuples:
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(75) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), p(s(s(s(z0)))), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1))))) by COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
p(s(z0)) → z0
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
S tuples:
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:
gr, p
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(77) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(s(z0)) → z0
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
S tuples:
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
Defined Rule Symbols:
gr
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(79) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2, x3)) = [1] + x1 + x2 + x3
POL(GR(x1, x2)) = 0
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [1]
POL(gr(x1, x2)) = [1]
POL(s(x1)) = [1] + x1
POL(true) = [1]
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
S tuples:
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
Defined Rule Symbols:
gr
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(81) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
We considered the (Usable) Rules:
gr(0, z0) → false
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
And the Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(COND(x1, x2, x3)) = [2]x1·x2 + [2]x22
POL(GR(x1, x2)) = x1
POL(c(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(false) = [1]
POL(gr(x1, x2)) = [2]
POL(s(x1)) = [1] + x1
POL(true) = [2]
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
gr(s(z0), 0) → true
gr(s(z0), s(z1)) → gr(z0, z1)
gr(0, z0) → false
Tuples:
COND(true, s(z0), 0) → c(COND(true, z0, 0))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(x0), s(x1)) → c(GR(s(x0), s(x1)))
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
S tuples:none
K tuples:
COND(true, s(s(0)), s(s(z0))) → c(GR(s(s(0)), s(s(z0))))
COND(true, s(s(z0)), s(s(z1))) → c(COND(gr(z0, z1), s(z0), s(s(z1))), GR(s(s(z0)), s(s(z1))))
COND(true, s(s(z0)), s(0)) → c(COND(true, s(z0), s(0)))
COND(true, s(s(y0)), 0) → c(COND(true, s(y0), 0))
COND(true, s(s(s(z0))), s(s(0))) → c(COND(true, s(s(z0)), s(s(0))), GR(s(s(s(z0))), s(s(0))))
COND(true, s(s(s(z0))), s(s(s(z1)))) → c(COND(gr(z0, z1), s(s(z0)), s(s(s(z1)))), GR(s(s(s(z0))), s(s(s(z1)))))
GR(s(s(y0)), s(s(y1))) → c3(GR(s(y0), s(y1)))
Defined Rule Symbols:
gr
Defined Pair Symbols:
COND, GR
Compound Symbols:
c, c, c3
(83) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(84) BOUNDS(1, 1)