* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: append(cons(x,xs),ys()) -> cons(x,append(xs,ys())) append(nil(),ys()) -> ys() filterhigh(n,cons(x,xs)) -> if2(ge(x,n),n,x,xs) filterhigh(n,nil()) -> nil() filterlow(n,cons(x,xs)) -> if1(ge(n,x),n,x,xs) filterlow(n,nil()) -> nil() ge(x,0()) -> true() ge(0(),s(x)) -> false() ge(s(x),s(y)) -> ge(x,y) get(n,cons(x,nil())) -> x get(n,nil()) -> 0() get(0(),cons(x,cons(y,xs))) -> x get(s(n),cons(x,cons(y,xs))) -> get(n,cons(y,xs)) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if1(false(),n,x,xs) -> cons(x,filterlow(n,xs)) if1(true(),n,x,xs) -> filterlow(n,xs) if2(false(),n,x,xs) -> cons(x,filterhigh(n,xs)) if2(true(),n,x,xs) -> filterhigh(n,xs) length(cons(x,xs)) -> s(length(xs)) length(nil()) -> 0() qs(n,cons(x,xs)) -> append(qs(half(n),filterlow(get(n,cons(x,xs)),cons(x,xs))) ,cons(get(n,cons(x,xs)),qs(half(n),filterhigh(get(n,cons(x,xs)),cons(x,xs))))) qs(n,nil()) -> nil() qsort(xs) -> qs(half(length(xs)),xs) - Signature: {append/2,filterhigh/2,filterlow/2,ge/2,get/2,half/1,if1/4,if2/4,length/1,qs/2,qsort/1} / {0/0,cons/2 ,false/0,nil/0,s/1,true/0,ys/0} - Obligation: innermost runtime complexity wrt. defined symbols {append,filterhigh,filterlow,ge,get,half,if1,if2,length,qs ,qsort} and constructors {0,cons,false,nil,s,true,ys} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: append(cons(x,xs),ys()) -> cons(x,append(xs,ys())) append(nil(),ys()) -> ys() filterhigh(n,cons(x,xs)) -> if2(ge(x,n),n,x,xs) filterhigh(n,nil()) -> nil() filterlow(n,cons(x,xs)) -> if1(ge(n,x),n,x,xs) filterlow(n,nil()) -> nil() ge(x,0()) -> true() ge(0(),s(x)) -> false() ge(s(x),s(y)) -> ge(x,y) get(n,cons(x,nil())) -> x get(n,nil()) -> 0() get(0(),cons(x,cons(y,xs))) -> x get(s(n),cons(x,cons(y,xs))) -> get(n,cons(y,xs)) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if1(false(),n,x,xs) -> cons(x,filterlow(n,xs)) if1(true(),n,x,xs) -> filterlow(n,xs) if2(false(),n,x,xs) -> cons(x,filterhigh(n,xs)) if2(true(),n,x,xs) -> filterhigh(n,xs) length(cons(x,xs)) -> s(length(xs)) length(nil()) -> 0() qs(n,cons(x,xs)) -> append(qs(half(n),filterlow(get(n,cons(x,xs)),cons(x,xs))) ,cons(get(n,cons(x,xs)),qs(half(n),filterhigh(get(n,cons(x,xs)),cons(x,xs))))) qs(n,nil()) -> nil() qsort(xs) -> qs(half(length(xs)),xs) - Signature: {append/2,filterhigh/2,filterlow/2,ge/2,get/2,half/1,if1/4,if2/4,length/1,qs/2,qsort/1} / {0/0,cons/2 ,false/0,nil/0,s/1,true/0,ys/0} - Obligation: innermost runtime complexity wrt. defined symbols {append,filterhigh,filterlow,ge,get,half,if1,if2,length,qs ,qsort} and constructors {0,cons,false,nil,s,true,ys} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: append(y,ys()){y -> cons(x,y)} = append(cons(x,y),ys()) ->^+ cons(x,append(y,ys())) = C[append(y,ys()) = append(y,ys()){}] WORST_CASE(Omega(n^1),?)