0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳8 CpxRNTS
↳9 CompleteCoflocoProof (⇔, 144 ms)
↳10 BOUNDS(1, n^1)
f(s(x), x) → f(s(x), round(s(x)))
round(0) → 0
round(0) → s(0)
round(s(0)) → s(0)
round(s(s(x))) → s(s(round(x)))
f(s(x), x) → f(s(x), round(s(x))) [1]
round(0) → 0 [1]
round(0) → s(0) [1]
round(s(0)) → s(0) [1]
round(s(s(x))) → s(s(round(x))) [1]
f(s(x), x) → f(s(x), round(s(x))) [1]
round(0) → 0 [1]
round(0) → s(0) [1]
round(s(0)) → s(0) [1]
round(s(s(x))) → s(s(round(x))) [1]
| f :: s:0 → s:0 → f s :: s:0 → s:0 round :: s:0 → s:0 0 :: s:0 | 
f(v0, v1) → null_f [0]
null_f
| Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: 
 The TRS has the following type information: 
 Rewrite Strategy: INNERMOST | 
0 => 0
null_f => 0
f(z, z') -{ 1 }→ f(1 + x, round(1 + x)) :|: z' = x, x >= 0, z = 1 + x
f(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
round(z) -{ 1 }→ 0 :|: z = 0
round(z) -{ 1 }→ 1 + 0 :|: z = 0
round(z) -{ 1 }→ 1 + 0 :|: z = 1 + 0
round(z) -{ 1 }→ 1 + (1 + round(x)) :|: x >= 0, z = 1 + (1 + x)
| eq(start(V, V1),0,[f(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[round(V, Out)],[V >= 0]). eq(f(V, V1, Out),1,[round(1 + V2, Ret1),f(1 + V2, Ret1, Ret)],[Out = Ret,V1 = V2,V2 >= 0,V = 1 + V2]). eq(round(V, Out),1,[],[Out = 0,V = 0]). eq(round(V, Out),1,[],[Out = 1,V = 0]). eq(round(V, Out),1,[],[Out = 1,V = 1]). eq(round(V, Out),1,[round(V3, Ret11)],[Out = 2 + Ret11,V3 >= 0,V = 2 + V3]). eq(f(V, V1, Out),0,[],[Out = 0,V4 >= 0,V5 >= 0,V = V4,V1 = V5]). input_output_vars(f(V,V1,Out),[V,V1],[Out]). input_output_vars(round(V,Out),[V],[Out]). | 
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components 
0. recursive  : [round/2]
1. recursive  : [f/3]
2. non_recursive  : [start/2]
#### Obtained direct recursion through partial evaluation 
0. SCC is partially evaluated into round/2
1. SCC is partially evaluated into f/3
2. SCC is partially evaluated into start/2
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations round/2 
* CE 9 is refined into CE [10] 
* CE 8 is refined into CE [11] 
* CE 7 is refined into CE [12] 
* CE 6 is refined into CE [13] 
### Cost equations --> "Loop" of round/2 
* CEs [11] --> Loop 8 
* CEs [12] --> Loop 9 
* CEs [13] --> Loop 10 
* CEs [10] --> Loop 11 
### Ranking functions of CR round(V,Out) 
* RF of phase [11]: [V-1]
#### Partial ranking functions of CR round(V,Out) 
* Partial RF of phase [11]:
  - RF of loop [11:1]:
    V-1
### Specialization of cost equations f/3 
* CE 5 is refined into CE [14] 
* CE 4 is refined into CE [15,16,17] 
### Cost equations --> "Loop" of f/3 
* CEs [17] --> Loop 12 
* CEs [16] --> Loop 13 
* CEs [15] --> Loop 14 
* CEs [14] --> Loop 15 
### Ranking functions of CR f(V,V1,Out) 
#### Partial ranking functions of CR f(V,V1,Out) 
### Specialization of cost equations start/2 
* CE 2 is refined into CE [18,19] 
* CE 3 is refined into CE [20,21,22,23,24] 
### Cost equations --> "Loop" of start/2 
* CEs [23,24] --> Loop 16 
* CEs [18,19] --> Loop 17 
* CEs [22] --> Loop 18 
* CEs [20,21] --> Loop 19 
### Ranking functions of CR start(V,V1) 
#### Partial ranking functions of CR start(V,V1) 
Computing Bounds
=====================================
#### Cost of chains of round(V,Out):
* Chain [[11],10]: 1*it(11)+1
  Such that:it(11) =< Out
  with precondition: [V=Out,V>=2] 
* Chain [[11],9]: 1*it(11)+1
  Such that:it(11) =< Out
  with precondition: [V+1=Out,V>=2] 
* Chain [[11],8]: 1*it(11)+1
  Such that:it(11) =< Out
  with precondition: [V=Out,V>=3] 
* Chain [10]: 1
  with precondition: [V=0,Out=0] 
* Chain [9]: 1
  with precondition: [V=0,Out=1] 
* Chain [8]: 1
  with precondition: [V=1,Out=1] 
#### Cost of chains of f(V,V1,Out):
* Chain [15]: 0
  with precondition: [Out=0,V>=0,V1>=0] 
* Chain [14,15]: 2
  with precondition: [V=1,V1=0,Out=0] 
* Chain [13,15]: 1*s(3)+2
  Such that:s(3) =< V+1
  with precondition: [Out=0,V=V1+1,V>=2] 
* Chain [12,15]: 2*s(5)+2
  Such that:s(4) =< V
s(5) =< s(4)
  with precondition: [Out=0,V1+1=V,V1>=1] 
#### Cost of chains of start(V,V1):
* Chain [19]: 1
  with precondition: [V=0] 
* Chain [18]: 1
  with precondition: [V=1] 
* Chain [17]: 1*s(10)+2*s(11)+2
  Such that:s(9) =< V1+1
s(10) =< V1+2
s(11) =< s(9)
  with precondition: [V>=0,V1>=0] 
* Chain [16]: 1*s(12)+2*s(14)+1
  Such that:s(13) =< V
s(12) =< V+1
s(14) =< s(13)
  with precondition: [V>=2] 
Closed-form bounds of start(V,V1): 
-------------------------------------
* Chain [19] with precondition: [V=0] 
    - Upper bound: 1 
    - Complexity: constant 
* Chain [18] with precondition: [V=1] 
    - Upper bound: 1 
    - Complexity: constant 
* Chain [17] with precondition: [V>=0,V1>=0] 
    - Upper bound: 3*V1+6 
    - Complexity: n 
* Chain [16] with precondition: [V>=2] 
    - Upper bound: 3*V+2 
    - Complexity: n 
### Maximum cost of start(V,V1): max([3*V+1,nat(V1+1)*2+1+nat(V1+2)])+1 
Asymptotic class: n 
* Total analysis performed in 115 ms.