* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: del(x,cons(y,z)) -> if2(eq(x,y),x,y,z) del(x,nil()) -> nil() eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) if1(false(),x,y,xs) -> min(y,xs) if1(true(),x,y,xs) -> min(x,xs) if2(false(),x,y,xs) -> cons(y,del(x,xs)) if2(true(),x,y,xs) -> xs le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) min(x,cons(y,z)) -> if1(le(x,y),x,y,z) min(x,nil()) -> x minsort(cons(x,y)) -> cons(min(x,y),minsort(del(min(x,y),cons(x,y)))) minsort(nil()) -> nil() - Signature: {del/2,eq/2,if1/4,if2/4,le/2,min/2,minsort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {del,eq,if1,if2,le,min,minsort} and constructors {0,cons ,false,nil,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: del(x,cons(y,z)) -> if2(eq(x,y),x,y,z) del(x,nil()) -> nil() eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) if1(false(),x,y,xs) -> min(y,xs) if1(true(),x,y,xs) -> min(x,xs) if2(false(),x,y,xs) -> cons(y,del(x,xs)) if2(true(),x,y,xs) -> xs le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) min(x,cons(y,z)) -> if1(le(x,y),x,y,z) min(x,nil()) -> x minsort(cons(x,y)) -> cons(min(x,y),minsort(del(min(x,y),cons(x,y)))) minsort(nil()) -> nil() - Signature: {del/2,eq/2,if1/4,if2/4,le/2,min/2,minsort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {del,eq,if1,if2,le,min,minsort} and constructors {0,cons ,false,nil,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: eq(x,y){x -> s(x),y -> s(y)} = eq(s(x),s(y)) ->^+ eq(x,y) = C[eq(x,y) = eq(x,y){}] WORST_CASE(Omega(n^1),?)