* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y))))
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,f,g,gt,h,id,if,k,m,minus,n,not,p
            ,t} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            and(x,false()) -> false()
            and(true(),true()) -> true()
            f(0()) -> true()
            f(s(x)) -> h(x)
            g(s(x),s(y)) -> if(and(f(s(x)),f(s(y)))
                              ,t(g(k(minus(m(x,y),n(x,y)),s(s(0()))),k(n(s(x),s(y)),s(s(0())))))
                              ,g(minus(m(x,y),n(x,y)),n(s(x),s(y))))
            gt(0(),y) -> false()
            gt(s(x),0()) -> true()
            gt(s(x),s(y)) -> gt(x,y)
            h(0()) -> false()
            h(s(x)) -> f(x)
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            k(0(),s(y)) -> 0()
            k(s(x),s(y)) -> s(k(minus(x,y),s(y)))
            m(x,0()) -> x
            m(0(),y) -> y
            m(s(x),s(y)) -> s(m(x,y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            n(x,0()) -> 0()
            n(0(),y) -> 0()
            n(s(x),s(y)) -> s(n(x,y))
            not(x) -> if(x,false(),true())
            p(0(),y) -> y
            p(id(x),s(y)) -> s(p(x,if(gt(s(y),y),y,s(y))))
            p(s(x),x) -> p(if(gt(x,x),id(x),id(x)),s(x))
            p(s(x),s(y)) -> s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            t(x) -> p(x,x)
        - Signature:
            {and/2,f/1,g/2,gt/2,h/1,id/1,if/3,k/2,m/2,minus/2,n/2,not/1,p/2,t/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {and,f,g,gt,h,id,if,k,m,minus,n,not,p
            ,t} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          gt(x,y){x -> s(x),y -> s(y)} =
            gt(s(x),s(y)) ->^+ gt(x,y)
              = C[gt(x,y) = gt(x,y){}]

WORST_CASE(Omega(n^1),?)