* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            double(0()) -> 0()
            double(s(x)) -> s(s(double(x)))
            gt(s(x),s(y)) -> gt(x,y)
            gt(s(x),zero()) -> true()
            gt(zero(),y) -> false()
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            not(x) -> if(x,false(),true())
            plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y))))
            plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x))
            plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            plus(zero(),y) -> y
        - Signature:
            {double/1,gt/2,id/1,if/3,minus/2,not/1,plus/2} / {0/0,false/0,s/1,true/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {double,gt,id,if,minus,not,plus} and constructors {0,false
            ,s,true,zero}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            double(0()) -> 0()
            double(s(x)) -> s(s(double(x)))
            gt(s(x),s(y)) -> gt(x,y)
            gt(s(x),zero()) -> true()
            gt(zero(),y) -> false()
            id(x) -> x
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            not(x) -> if(x,false(),true())
            plus(id(x),s(y)) -> s(plus(x,if(gt(s(y),y),y,s(y))))
            plus(s(x),x) -> plus(if(gt(x,x),id(x),id(x)),s(x))
            plus(s(x),s(y)) -> s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y)))))
            plus(zero(),y) -> y
        - Signature:
            {double/1,gt/2,id/1,if/3,minus/2,not/1,plus/2} / {0/0,false/0,s/1,true/0,zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {double,gt,id,if,minus,not,plus} and constructors {0,false
            ,s,true,zero}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          double(x){x -> s(x)} =
            double(s(x)) ->^+ s(s(double(x)))
              = C[double(x) = double(x){}]

WORST_CASE(Omega(n^1),?)