(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
nonZero(0) → false
nonZero(s(x)) → true
p(0) → 0
p(s(x)) → x
id_inc(x) → x
id_inc(x) → s(x)
random(x) → rand(x, 0)
rand(x, y) → if(nonZero(x), x, y)
if(false, x, y) → y
if(true, x, y) → rand(p(x), id_inc(y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
random(z0) → rand(z0, 0)
rand(z0, z1) → if(nonZero(z0), z0, z1)
if(false, z0, z1) → z1
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
NONZERO(0) → c
NONZERO(s(z0)) → c1
P(0) → c2
P(s(z0)) → c3
ID_INC(z0) → c4
ID_INC(z0) → c5
RANDOM(z0) → c6(RAND(z0, 0))
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
IF(false, z0, z1) → c8
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
S tuples:
NONZERO(0) → c
NONZERO(s(z0)) → c1
P(0) → c2
P(s(z0)) → c3
ID_INC(z0) → c4
ID_INC(z0) → c5
RANDOM(z0) → c6(RAND(z0, 0))
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
IF(false, z0, z1) → c8
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
NONZERO, P, ID_INC, RANDOM, RAND, IF
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
RANDOM(z0) → c6(RAND(z0, 0))
Removed 7 trailing nodes:
NONZERO(0) → c
ID_INC(z0) → c5
P(s(z0)) → c3
ID_INC(z0) → c4
NONZERO(s(z0)) → c1
P(0) → c2
IF(false, z0, z1) → c8
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
random(z0) → rand(z0, 0)
rand(z0, z1) → if(nonZero(z0), z0, z1)
if(false, z0, z1) → z1
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
S tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1), NONZERO(z0))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)), P(z0), ID_INC(z1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
random(z0) → rand(z0, 0)
rand(z0, z1) → if(nonZero(z0), z0, z1)
if(false, z0, z1) → z1
if(true, z0, z1) → rand(p(z0), id_inc(z1))
Tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
S tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc, random, rand, if
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
random(z0) → rand(z0, 0)
rand(z0, z1) → if(nonZero(z0), z0, z1)
if(false, z0, z1) → z1
if(true, z0, z1) → rand(p(z0), id_inc(z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
S tuples:
RAND(z0, z1) → c7(IF(nonZero(z0), z0, z1))
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
RAND(
z0,
z1) →
c7(
IF(
nonZero(
z0),
z0,
z1)) by
RAND(0, x1) → c7(IF(false, 0, x1))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(0, x1) → c7(IF(false, 0, x1))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(0, x1) → c7(IF(false, 0, x1))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
RAND(0, x1) → c7(IF(false, 0, x1))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
nonZero(0) → false
nonZero(s(z0)) → true
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
nonZero, p, id_inc
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7
(13) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
nonZero(0) → false
nonZero(s(z0)) → true
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
S tuples:
IF(true, z0, z1) → c9(RAND(p(z0), id_inc(z1)))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
K tuples:none
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
IF, RAND
Compound Symbols:
c9, c7
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
z0,
z1) →
c9(
RAND(
p(
z0),
id_inc(
z1))) by
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
K tuples:none
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(17) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IF(true, 0, x1) → c9(RAND(0, id_inc(x1)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
K tuples:none
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF(x1, x2, x3)) = [2]x2
POL(RAND(x1, x2)) = [2]x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(id_inc(x1)) = 0
POL(p(x1)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), z0))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
x0,
z0) →
c9(
RAND(
p(
x0),
z0)) by
IF(true, 0, x1) → c9(RAND(0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, 0, x1) → c9(RAND(0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, 0, x1) → c9(RAND(0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IF(true, 0, x1) → c9(RAND(0, x1))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c9(RAND(z0, x1))
We considered the (Usable) Rules:
p(0) → 0
p(s(z0)) → z0
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF(x1, x2, x3)) = x2
POL(RAND(x1, x2)) = x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(id_inc(x1)) = [1] + x1
POL(p(x1)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, x0, z0) → c9(RAND(p(x0), s(z0)))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
x0,
z0) →
c9(
RAND(
p(
x0),
s(
z0))) by
IF(true, 0, x1) → c9(RAND(0, s(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
IF(true, 0, x1) → c9(RAND(0, s(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, 0, x1) → c9(RAND(0, s(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IF(true, 0, x1) → c9(RAND(0, s(x1)))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → 0
p(s(z0)) → z0
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
p, id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(31) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → 0
p(s(z0)) → z0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
Defined Rule Symbols:
id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(33) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
We considered the (Usable) Rules:none
And the Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(IF(x1, x2, x3)) = [2]x2
POL(RAND(x1, x2)) = [3] + [2]x1
POL(c7(x1)) = x1
POL(c9(x1)) = x1
POL(id_inc(x1)) = 0
POL(s(x1)) = [2] + x1
POL(true) = 0
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
id_inc(z0) → z0
id_inc(z0) → s(z0)
Tuples:
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
S tuples:none
K tuples:
IF(true, s(z0), x1) → c9(RAND(z0, id_inc(x1)))
IF(true, s(z0), x1) → c9(RAND(z0, x1))
RAND(s(z0), x1) → c7(IF(true, s(z0), x1))
IF(true, s(z0), x1) → c9(RAND(z0, s(x1)))
Defined Rule Symbols:
id_inc
Defined Pair Symbols:
RAND, IF
Compound Symbols:
c7, c9
(35) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(36) BOUNDS(1, 1)