* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            if(false(),x,y,z,u,v) -> if2(le(y,s(u)),x,y,s(z),s(u),v)
            if(true(),x,y,z,u,v) -> v
            if2(false(),x,y,z,u,v) -> quotIter(x,y,z,u,v)
            if2(true(),x,y,z,u,v) -> quotIter(x,y,z,0(),s(v))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            quot(x,0()) -> quotZeroErro()
            quot(x,s(y)) -> quotIter(x,s(y),0(),0(),0())
            quotIter(x,s(y),z,u,v) -> if(le(x,z),x,s(y),z,u,v)
        - Signature:
            {if/6,if2/6,le/2,quot/2,quotIter/5} / {0/0,false/0,quotZeroErro/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if,if2,le,quot,quotIter} and constructors {0,false
            ,quotZeroErro,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            if(false(),x,y,z,u,v) -> if2(le(y,s(u)),x,y,s(z),s(u),v)
            if(true(),x,y,z,u,v) -> v
            if2(false(),x,y,z,u,v) -> quotIter(x,y,z,u,v)
            if2(true(),x,y,z,u,v) -> quotIter(x,y,z,0(),s(v))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            quot(x,0()) -> quotZeroErro()
            quot(x,s(y)) -> quotIter(x,s(y),0(),0(),0())
            quotIter(x,s(y),z,u,v) -> if(le(x,z),x,s(y),z,u,v)
        - Signature:
            {if/6,if2/6,le/2,quot/2,quotIter/5} / {0/0,false/0,quotZeroErro/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if,if2,le,quot,quotIter} and constructors {0,false
            ,quotZeroErro,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          le(x,y){x -> s(x),y -> s(y)} =
            le(s(x),s(y)) ->^+ le(x,y)
              = C[le(x,y) = le(x,y){}]

WORST_CASE(Omega(n^1),?)