* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
ack(0(),x) -> s(x)
ack(s(x),0()) -> ack(x,s(0()))
ack(s(x),s(y)) -> ack(x,ack(s(x),y))
d(x) -> if(le(x,nr()),x)
if(false(),x) -> nil()
if(true(),x) -> cons(x,d(s(x)))
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
nr() -> ack(s(s(s(s(s(s(0())))))),0())
numbers() -> d(0())
- Signature:
{ack/2,d/1,if/2,le/2,nr/0,numbers/0} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {ack,d,if,le,nr,numbers} and constructors {0,cons,false
,nil,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
ack(0(),x) -> s(x)
ack(s(x),0()) -> ack(x,s(0()))
ack(s(x),s(y)) -> ack(x,ack(s(x),y))
d(x) -> if(le(x,nr()),x)
if(false(),x) -> nil()
if(true(),x) -> cons(x,d(s(x)))
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
nr() -> ack(s(s(s(s(s(s(0())))))),0())
numbers() -> d(0())
- Signature:
{ack/2,d/1,if/2,le/2,nr/0,numbers/0} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {ack,d,if,le,nr,numbers} and constructors {0,cons,false
,nil,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
ack(s(x),y){y -> s(y)} =
ack(s(x),s(y)) ->^+ ack(x,ack(s(x),y))
= C[ack(s(x),y) = ack(s(x),y){}]
WORST_CASE(Omega(n^1),?)