(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(x, y)
id_inc(x) → x
id_inc(x) → s(x)
div(x, y) → if(ge(y, s(0)), ge(x, y), x, y)
if(false, b, x, y) → div_by_zero
if(true, false, x, y) → 0
if(true, true, x, y) → id_inc(div(minus(x, y), y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
div(z0, z1) → if(ge(z1, s(0)), ge(z0, z1), z0, z1)
if(false, z0, z1, z2) → div_by_zero
if(true, false, z0, z1) → 0
if(true, true, z0, z1) → id_inc(div(minus(z0, z1), z1))
Tuples:
GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
ID_INC(z0) → c6
ID_INC(z0) → c7
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(false, z0, z1, z2) → c9
IF(true, false, z0, z1) → c10
IF(true, true, z0, z1) → c11(ID_INC(div(minus(z0, z1), z1)), DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
GE(z0, 0) → c
GE(0, s(z0)) → c1
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(z0, 0) → c3
MINUS(0, z0) → c4
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
ID_INC(z0) → c6
ID_INC(z0) → c7
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(false, z0, z1, z2) → c9
IF(true, false, z0, z1) → c10
IF(true, true, z0, z1) → c11(ID_INC(div(minus(z0, z1), z1)), DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, div, if
Defined Pair Symbols:
GE, MINUS, ID_INC, DIV, IF
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 8 trailing nodes:
ID_INC(z0) → c7
IF(false, z0, z1, z2) → c9
GE(z0, 0) → c
ID_INC(z0) → c6
MINUS(0, z0) → c4
IF(true, false, z0, z1) → c10
MINUS(z0, 0) → c3
GE(0, s(z0)) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
div(z0, z1) → if(ge(z1, s(0)), ge(z0, z1), z0, z1)
if(false, z0, z1, z2) → div_by_zero
if(true, false, z0, z1) → 0
if(true, true, z0, z1) → id_inc(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(ID_INC(div(minus(z0, z1), z1)), DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(ID_INC(div(minus(z0, z1), z1)), DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, div, if
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c8, c11
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
id_inc(z0) → z0
id_inc(z0) → s(z0)
div(z0, z1) → if(ge(z1, s(0)), ge(z0, z1), z0, z1)
if(false, z0, z1, z2) → div_by_zero
if(true, false, z0, z1) → 0
if(true, true, z0, z1) → id_inc(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, id_inc, div, if
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c8, c11
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
id_inc(z0) → z0
id_inc(z0) → s(z0)
div(z0, z1) → if(ge(z1, s(0)), ge(z0, z1), z0, z1)
if(false, z0, z1, z2) → div_by_zero
if(true, false, z0, z1) → 0
if(true, true, z0, z1) → id_inc(div(minus(z0, z1), z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
DIV(z0, z1) → c8(IF(ge(z1, s(0)), ge(z0, z1), z0, z1), GE(z1, s(0)), GE(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, DIV, IF
Compound Symbols:
c2, c5, c8, c11
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
z0,
z1) →
c8(
IF(
ge(
z1,
s(
0)),
ge(
z0,
z1),
z0,
z1),
GE(
z1,
s(
0)),
GE(
z0,
z1)) by
DIV(0, s(z0)) → c8(IF(ge(s(z0), s(0)), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0) → c8(IF(false, ge(x0, 0), x0, 0), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(IF(ge(s(z0), s(0)), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0) → c8(IF(false, ge(x0, 0), x0, 0), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(IF(ge(s(z0), s(0)), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0), GE(0, s(0)), GE(z0, 0))
DIV(x0, 0) → c8(IF(false, ge(x0, 0), x0, 0), GE(0, s(0)), GE(x0, 0))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:none
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
DIV(x0, 0) → c8(IF(false, ge(x0, 0), x0, 0), GE(0, s(0)), GE(x0, 0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(IF(ge(s(z0), s(0)), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0), GE(0, s(0)), GE(z0, 0))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(IF(ge(s(z0), s(0)), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0), GE(0, s(0)), GE(z0, 0))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:none
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
K tuples:none
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
We considered the (Usable) Rules:none
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x4
POL(MINUS(x1, x2)) = 0
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(false) = 0
POL(ge(x1, x2)) = [1]
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1]
POL(true) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(z0), s(z1)) → c8(IF(ge(s(z1), s(0)), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
s(
z0),
s(
z1)) →
c8(
IF(
ge(
s(
z1),
s(
0)),
ge(
z0,
z1),
s(
z0),
s(
z1)),
GE(
s(
z1),
s(
0)),
GE(
s(
z0),
s(
z1))) by
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0))) → c8(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0))), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0))) → c8(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0))), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(0), s(s(z0))) → c8(IF(ge(s(s(z0)), s(0)), false, s(0), s(s(z0))), GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c8(GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c8(GE(s(s(z0)), s(0)), GE(s(0), s(s(z0))))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c8
(21) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(DIV(x1, x2)) = x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x4
POL(MINUS(x1, x2)) = 0
POL(c(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2, x3)) = x1 + x2 + x3
POL(false) = [1]
POL(ge(x1, x2)) = [1] + x1
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1]
POL(true) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c8(IF(ge(z0, 0), ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
x0,
s(
z0)) →
c8(
IF(
ge(
z0,
0),
ge(
x0,
s(
z0)),
x0,
s(
z0)),
GE(
s(
z0),
s(
0)),
GE(
x0,
s(
z0))) by
DIV(0, s(z0)) → c8(IF(ge(z0, 0), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(ge(z1, 0), ge(z0, z1), s(z0), s(z1)), GE(s(z1), s(0)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(0, s(z0)) → c8(IF(ge(z0, 0), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(0, s(z0)) → c8(IF(ge(z0, 0), false, 0, s(z0)), GE(s(z0), s(0)), GE(0, s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(29) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(z0, 0) → c8(IF(ge(0, s(0)), true, z0, 0))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
z0,
0) →
c8(
IF(
ge(
0,
s(
0)),
true,
z0,
0)) by
DIV(x0, 0) → c8(IF(false, true, x0, 0))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(x0, 0) → c8(IF(false, true, x0, 0))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
DIV(x0, 0) → c8(IF(false, true, x0, 0))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(33) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
DIV(x0, 0) → c8(IF(false, true, x0, 0))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
GE, MINUS, IF, DIV
Compound Symbols:
c2, c5, c11, c8, c8, c
(35) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
GE(
s(
z0),
s(
z1)) →
c2(
GE(
z0,
z1)) by
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c11, c8, c8, c, c2
(37) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
DIV(s(0), s(s(z0))) → c(GE(s(s(z0)), s(0)))
DIV(0, s(z0)) → c8(GE(s(z0), s(0)))
DIV(s(0), s(s(z0))) → c(GE(s(0), s(s(z0))))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z1)), s(0)), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)), GE(s(0), s(0)), GE(s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(z0), s(0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(s(z0), s(0)), GE(x0, s(z0)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c11, c8, c8, c2
(39) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing tuple parts
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
S tuples:
MINUS(s(z0), s(z1)) → c5(MINUS(z0, z1))
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
MINUS, IF, DIV, GE
Compound Symbols:
c5, c11, c8, c2, c8
(41) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
MINUS(
s(
z0),
s(
z1)) →
c5(
MINUS(
z0,
z1)) by
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
S tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
IF, DIV, GE, MINUS
Compound Symbols:
c11, c8, c2, c8, c5
(43) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(s(z1)), s(0)), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1)))) by DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
S tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
IF, DIV, GE, MINUS
Compound Symbols:
c11, c8, c2, c8, c5
(45) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace DIV(s(z0), s(0)) → c8(IF(ge(s(0), s(0)), true, s(z0), s(0))) by DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
S tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
IF, DIV, GE, MINUS
Compound Symbols:
c11, c8, c2, c8, c5
(47) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0))) by DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(s(x0), s(z0)) → c8(IF(ge(z0, 0), ge(x0, z0), s(x0), s(z0)), GE(s(x0), s(z0)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
S tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
IF, DIV, GE, MINUS
Compound Symbols:
c11, c8, c2, c8, c5
(49) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace DIV(s(z0), s(z1)) → c8(IF(ge(z1, 0), ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1))) by DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
S tuples:
IF(true, true, z0, z1) → c11(DIV(minus(z0, z1), z1), MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
IF, DIV, GE, MINUS
Compound Symbols:
c11, c8, c2, c8, c5
(51) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
IF(
true,
true,
z0,
z1) →
c11(
DIV(
minus(
z0,
z1),
z1),
MINUS(
z0,
z1)) by
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11
(53) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(55) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
s(
x0)),
s(
s(
x1))) →
c11(
DIV(
minus(
s(
s(
x0)),
s(
s(
x1))),
s(
s(
x1))),
MINUS(
s(
s(
x0)),
s(
s(
x1)))) by
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(57) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
We considered the (Usable) Rules:
ge(z0, 0) → true
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [1] + x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = [1] + x1
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = [1]
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1]
POL(true) = [1]
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(59) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x3
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(x1)) → c11(DIV(minus(s(x0), s(x1)), s(x1)), MINUS(s(x0), s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(61) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
x0),
s(
x1)) →
c11(
DIV(
minus(
s(
x0),
s(
x1)),
s(
x1)),
MINUS(
s(
x0),
s(
x1))) by
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(63) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
We considered the (Usable) Rules:
ge(s(z0), s(z1)) → ge(z0, z1)
ge(0, s(z0)) → false
ge(z0, 0) → true
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [1] + x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x2 + x3
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = [1]
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [1]
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(x0), s(0)) → c11(DIV(minus(s(x0), s(0)), s(0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(65) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
x0),
s(
0)) →
c11(
DIV(
minus(
s(
x0),
s(
0)),
s(
0))) by
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(67) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x3
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(69) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
s(
x0)),
s(
s(
x1))) →
c11(
DIV(
minus(
s(
x0),
s(
x1)),
s(
s(
x1))),
MINUS(
s(
s(
x0)),
s(
s(
x1)))) by
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(71) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
s(
z0),
s(
0)) →
c11(
DIV(
minus(
z0,
0),
s(
0))) by
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
(72) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
DIV(x0, s(z0)) → c8(IF(true, ge(x0, s(z0)), x0, s(z0)), GE(x0, s(z0)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c8, c5, c11, c11
(73) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
x0,
s(
z0)) →
c8(
IF(
true,
ge(
x0,
s(
z0)),
x0,
s(
z0)),
GE(
x0,
s(
z0))) by
DIV(0, s(z0)) → c8(IF(true, false, 0, s(z0)), GE(0, s(z0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
(74) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
DIV(0, s(z0)) → c8(IF(true, false, 0, s(z0)), GE(0, s(z0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
DIV(0, s(z0)) → c8(IF(true, false, 0, s(z0)), GE(0, s(z0)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(75) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(76) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
DIV(0, s(z0)) → c8
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
DIV(0, s(z0)) → c8
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11, c8
(77) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(0, s(z0)) → c8
We considered the (Usable) Rules:none
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
DIV(0, s(z0)) → c8
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x4
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8) = 0
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = [1]
POL(minus(x1, x2)) = 0
POL(s(x1)) = [1]
POL(true) = 0
(78) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
DIV(0, s(z0)) → c8
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, x0, s(x1)) → c11(DIV(minus(x0, s(x1)), s(x1)), MINUS(x0, s(x1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
DIV(0, s(z0)) → c8
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11, c8
(79) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
true,
x0,
s(
x1)) →
c11(
DIV(
minus(
x0,
s(
x1)),
s(
x1)),
MINUS(
x0,
s(
x1))) by
IF(true, true, 0, s(x1)) → c11(DIV(0, s(x1)), MINUS(0, s(x1)))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(80) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
DIV(0, s(z0)) → c8
IF(true, true, 0, s(x1)) → c11(DIV(0, s(x1)), MINUS(0, s(x1)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, 0, s(x1)) → c11(DIV(0, s(x1)), MINUS(0, s(x1)))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(s(x0)), s(s(x1))) → c11(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(0)) → c11(DIV(minus(z0, 0), s(0)))
DIV(0, s(z0)) → c8
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11, c8
(81) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
DIV(0, s(z0)) → c8
IF(true, true, s(0), s(0)) → c11(DIV(0, s(0)))
IF(true, true, 0, s(x1)) → c11(DIV(0, s(x1)), MINUS(0, s(x1)))
(82) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(83) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
(84) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(85) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [1] + x1 + x2
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3, x4)) = x3 + x4
POL(MINUS(x1, x2)) = 0
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(86) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(87) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
We considered the (Usable) Rules:
ge(z0, 0) → true
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(DIV(x1, x2)) = [2] + [2]x1 + x12
POL(GE(x1, x2)) = [1]
POL(IF(x1, x2, x3, x4)) = [1] + x1·x3 + x32
POL(MINUS(x1, x2)) = [2]x1
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = [1]
POL(ge(x1, x2)) = [2]x22
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = [2]
(88) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(89) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
minus(0, z0) → 0
And the Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(DIV(x1, x2)) = [1] + [2]x1 + x12
POL(GE(x1, x2)) = x1
POL(IF(x1, x2, x3, x4)) = x32
POL(MINUS(x1, x2)) = [1] + x1
POL(c11(x1)) = x1
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(false) = [2]
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(90) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
ge(z0, 0) → true
minus(z0, 0) → z0
minus(0, z0) → 0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
IF(true, true, s(s(z0)), s(s(z1))) → c11(DIV(minus(z0, z1), s(s(z1))), MINUS(s(s(z0)), s(s(z1))))
IF(true, true, s(z0), s(0)) → c11(DIV(z0, s(0)))
S tuples:none
K tuples:
DIV(s(x0), s(x1)) → c8(GE(s(x0), s(x1)))
IF(true, true, s(s(x0)), s(s(x1))) → c11(MINUS(s(s(x0)), s(s(x1))))
IF(true, true, s(z0), s(z1)) → c11(DIV(minus(z0, z1), s(z1)), MINUS(s(z0), s(z1)))
DIV(s(s(z0)), s(s(z1))) → c8(IF(ge(s(z1), 0), ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
DIV(s(z0), s(0)) → c8(IF(ge(0, 0), true, s(z0), s(0)))
DIV(s(z0), s(z1)) → c8(IF(true, ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
MINUS(s(s(y0)), s(s(y1))) → c5(MINUS(s(y0), s(y1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
Defined Rule Symbols:
ge, minus
Defined Pair Symbols:
DIV, GE, MINUS, IF
Compound Symbols:
c8, c2, c5, c8, c11, c11
(91) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(92) BOUNDS(1, 1)