* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: fac(x) -> loop(x,s(0()),s(0())) if(false(),x,c,y) -> loop(x,s(c),times(y,s(c))) if(true(),x,c,y) -> y loop(x,c,y) -> if(lt(x,c),x,c,y) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) - Signature: {fac/1,if/4,loop/3,lt/2,plus/2,times/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {fac,if,loop,lt,plus,times} and constructors {0,false,s ,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: fac(x) -> loop(x,s(0()),s(0())) if(false(),x,c,y) -> loop(x,s(c),times(y,s(c))) if(true(),x,c,y) -> y loop(x,c,y) -> if(lt(x,c),x,c,y) lt(x,0()) -> false() lt(0(),s(x)) -> true() lt(s(x),s(y)) -> lt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) - Signature: {fac/1,if/4,loop/3,lt/2,plus/2,times/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {fac,if,loop,lt,plus,times} and constructors {0,false,s ,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: lt(x,y){x -> s(x),y -> s(y)} = lt(s(x),s(y)) ->^+ lt(x,y) = C[lt(x,y) = lt(x,y){}] WORST_CASE(Omega(n^1),?)