* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: bin2s(cons(x,xs)) -> bin2ss(x,xs) bin2s(nil()) -> 0() bin2ss(x,cons(0(),xs)) -> bin2ss(double(x),xs) bin2ss(x,cons(1(),xs)) -> bin2ss(s(double(x)),xs) bin2ss(x,nil()) -> x eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if1(false(),x,y,lists) -> s2bin2(x,lists) if1(true(),x,y,lists) -> s2bin1(x,s(y),more(lists)) if2(false(),x,xs,ys) -> s2bin2(x,ys) if2(true(),x,xs,ys) -> xs log(0()) -> 0() log(s(0())) -> 0() log(s(s(x))) -> s(log(half(s(s(x))))) lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) more(cons(xs,ys)) -> cons(cons(0(),xs),cons(cons(1(),xs),cons(xs,ys))) more(nil()) -> nil() s2bin(x) -> s2bin1(x,0(),cons(nil(),nil())) s2bin1(x,y,lists) -> if1(lt(y,log(x)),x,y,lists) s2bin2(x,cons(xs,ys)) -> if2(eq(x,bin2s(xs)),x,xs,ys) s2bin2(x,nil()) -> bug_list_not() - Signature: {bin2s/1,bin2ss/2,eq/2,half/1,if1/4,if2/4,log/1,lt/2,more/1,s2bin/1,s2bin1/3,s2bin2/2} / {0/0,1/0 ,bug_list_not/0,cons/2,double/1,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {bin2s,bin2ss,eq,half,if1,if2,log,lt,more,s2bin,s2bin1 ,s2bin2} and constructors {0,1,bug_list_not,cons,double,false,nil,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: bin2s(cons(x,xs)) -> bin2ss(x,xs) bin2s(nil()) -> 0() bin2ss(x,cons(0(),xs)) -> bin2ss(double(x),xs) bin2ss(x,cons(1(),xs)) -> bin2ss(s(double(x)),xs) bin2ss(x,nil()) -> x eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if1(false(),x,y,lists) -> s2bin2(x,lists) if1(true(),x,y,lists) -> s2bin1(x,s(y),more(lists)) if2(false(),x,xs,ys) -> s2bin2(x,ys) if2(true(),x,xs,ys) -> xs log(0()) -> 0() log(s(0())) -> 0() log(s(s(x))) -> s(log(half(s(s(x))))) lt(x,0()) -> false() lt(0(),s(y)) -> true() lt(s(x),s(y)) -> lt(x,y) more(cons(xs,ys)) -> cons(cons(0(),xs),cons(cons(1(),xs),cons(xs,ys))) more(nil()) -> nil() s2bin(x) -> s2bin1(x,0(),cons(nil(),nil())) s2bin1(x,y,lists) -> if1(lt(y,log(x)),x,y,lists) s2bin2(x,cons(xs,ys)) -> if2(eq(x,bin2s(xs)),x,xs,ys) s2bin2(x,nil()) -> bug_list_not() - Signature: {bin2s/1,bin2ss/2,eq/2,half/1,if1/4,if2/4,log/1,lt/2,more/1,s2bin/1,s2bin1/3,s2bin2/2} / {0/0,1/0 ,bug_list_not/0,cons/2,double/1,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {bin2s,bin2ss,eq,half,if1,if2,log,lt,more,s2bin,s2bin1 ,s2bin2} and constructors {0,1,bug_list_not,cons,double,false,nil,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: bin2ss(x,y){y -> cons(0(),y)} = bin2ss(x,cons(0(),y)) ->^+ bin2ss(double(x),y) = C[bin2ss(double(x),y) = bin2ss(x,y){x -> double(x)}] WORST_CASE(Omega(n^1),?)