* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: aver(sum,z) -> if(gt(sum,double(z)),sum,z) average(x,y) -> aver(plus(x,y),0()) double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) if(false(),sum,z) -> z if(true(),sum,z) -> aver(sum,s(z)) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {aver,average,double,gt,if,plus} and constructors {0,false ,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: aver(sum,z) -> if(gt(sum,double(z)),sum,z) average(x,y) -> aver(plus(x,y),0()) double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) if(false(),sum,z) -> z if(true(),sum,z) -> aver(sum,s(z)) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {aver,average,double,gt,if,plus} and constructors {0,false ,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: double(x){x -> s(x)} = double(s(x)) ->^+ s(s(double(x))) = C[double(x) = double(x){}] WORST_CASE(Omega(n^1),?)