* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            bitIter(x,y) -> if(zero(x),x,inc(y))
            bits(x) -> bitIter(x,0())
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            if(false(),x,y) -> bitIter(half(x),y)
            if(true(),x,y) -> p(y)
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            p(0()) -> 0()
            p(s(x)) -> x
            zero(0()) -> true()
            zero(s(x)) -> false()
        - Signature:
            {bitIter/2,bits/1,half/1,if/3,inc/1,p/1,zero/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {bitIter,bits,half,if,inc,p,zero} and constructors {0
            ,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            bitIter(x,y) -> if(zero(x),x,inc(y))
            bits(x) -> bitIter(x,0())
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            if(false(),x,y) -> bitIter(half(x),y)
            if(true(),x,y) -> p(y)
            inc(0()) -> 0()
            inc(s(x)) -> s(inc(x))
            p(0()) -> 0()
            p(s(x)) -> x
            zero(0()) -> true()
            zero(s(x)) -> false()
        - Signature:
            {bitIter/2,bits/1,half/1,if/3,inc/1,p/1,zero/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {bitIter,bits,half,if,inc,p,zero} and constructors {0
            ,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          half(x){x -> s(s(x))} =
            half(s(s(x))) ->^+ s(half(x))
              = C[half(x) = half(x){}]

WORST_CASE(Omega(n^1),?)