* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
id(0()) -> 0()
id(s(x)) -> s(id(x))
if2(false(),b2,x,y) -> if3(b2,x,y)
if2(true(),b2,x,y) -> 0()
if3(false(),x,y) -> x
if3(true(),x,y) -> mod(minus(x,y),s(y))
if_mod(false(),b1,b2,x,y) -> if2(b1,b2,x,y)
if_mod(true(),b1,b2,x,y) -> 0()
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
mod(x,y) -> if_mod(zero(x),zero(y),le(y,x),id(x),id(y))
zero(0()) -> true()
zero(s(x)) -> false()
- Signature:
{id/1,if2/4,if3/3,if_mod/5,le/2,minus/2,mod/2,zero/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {id,if2,if3,if_mod,le,minus,mod,zero} and constructors {0
,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
id(0()) -> 0()
id(s(x)) -> s(id(x))
if2(false(),b2,x,y) -> if3(b2,x,y)
if2(true(),b2,x,y) -> 0()
if3(false(),x,y) -> x
if3(true(),x,y) -> mod(minus(x,y),s(y))
if_mod(false(),b1,b2,x,y) -> if2(b1,b2,x,y)
if_mod(true(),b1,b2,x,y) -> 0()
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
mod(x,y) -> if_mod(zero(x),zero(y),le(y,x),id(x),id(y))
zero(0()) -> true()
zero(s(x)) -> false()
- Signature:
{id/1,if2/4,if3/3,if_mod/5,le/2,minus/2,mod/2,zero/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {id,if2,if3,if_mod,le,minus,mod,zero} and constructors {0
,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
id(x){x -> s(x)} =
id(s(x)) ->^+ s(id(x))
= C[id(x) = id(x){}]
WORST_CASE(Omega(n^1),?)