* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: conv(x) -> conviter(x,cons(0(),nil())) conviter(x,l) -> if(zero(x),x,l) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(false(),x,l) -> conviter(half(x),cons(lastbit(x),l)) if(true(),x,l) -> l lastbit(0()) -> 0() lastbit(s(0())) -> s(0()) lastbit(s(s(x))) -> lastbit(x) zero(0()) -> true() zero(s(x)) -> false() - Signature: {conv/1,conviter/2,half/1,if/3,lastbit/1,zero/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {conv,conviter,half,if,lastbit,zero} and constructors {0 ,cons,false,nil,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: conv(x) -> conviter(x,cons(0(),nil())) conviter(x,l) -> if(zero(x),x,l) half(0()) -> 0() half(s(0())) -> 0() half(s(s(x))) -> s(half(x)) if(false(),x,l) -> conviter(half(x),cons(lastbit(x),l)) if(true(),x,l) -> l lastbit(0()) -> 0() lastbit(s(0())) -> s(0()) lastbit(s(s(x))) -> lastbit(x) zero(0()) -> true() zero(s(x)) -> false() - Signature: {conv/1,conviter/2,half/1,if/3,lastbit/1,zero/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {conv,conviter,half,if,lastbit,zero} and constructors {0 ,cons,false,nil,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: half(x){x -> s(s(x))} = half(s(s(x))) ->^+ s(half(x)) = C[half(x) = half(x){}] WORST_CASE(Omega(n^1),?)