* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
ack(0(),x) -> plus(x,s(0()))
ack(0(),x) -> s(x)
ack(s(x),0()) -> ack(x,s(0()))
ack(s(x),s(y)) -> ack(x,ack(s(x),y))
div(x,y) -> quot(x,y,0())
minus(x,0()) -> x
minus(0(),y) -> 0()
minus(minus(x,y),z) -> minus(x,plus(y,z))
minus(s(x),s(y)) -> minus(x,y)
p(0()) -> 0()
p(s(x)) -> x
plus(0(),y) -> y
plus(s(x),y) -> plus(x,s(y))
plus(s(x),y) -> s(plus(y,x))
quot(0(),s(y),z) -> z
quot(s(x),s(y),z) -> quot(minus(p(ack(0(),x)),y),s(y),s(z))
zero(0()) -> true()
zero(s(x)) -> false()
- Signature:
{ack/2,div/2,minus/2,p/1,plus/2,quot/3,zero/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {ack,div,minus,p,plus,quot,zero} and constructors {0,false
,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
ack(0(),x) -> plus(x,s(0()))
ack(0(),x) -> s(x)
ack(s(x),0()) -> ack(x,s(0()))
ack(s(x),s(y)) -> ack(x,ack(s(x),y))
div(x,y) -> quot(x,y,0())
minus(x,0()) -> x
minus(0(),y) -> 0()
minus(minus(x,y),z) -> minus(x,plus(y,z))
minus(s(x),s(y)) -> minus(x,y)
p(0()) -> 0()
p(s(x)) -> x
plus(0(),y) -> y
plus(s(x),y) -> plus(x,s(y))
plus(s(x),y) -> s(plus(y,x))
quot(0(),s(y),z) -> z
quot(s(x),s(y),z) -> quot(minus(p(ack(0(),x)),y),s(y),s(z))
zero(0()) -> true()
zero(s(x)) -> false()
- Signature:
{ack/2,div/2,minus/2,p/1,plus/2,quot/3,zero/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {ack,div,minus,p,plus,quot,zero} and constructors {0,false
,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
ack(s(x),y){y -> s(y)} =
ack(s(x),s(y)) ->^+ ack(x,ack(s(x),y))
= C[ack(s(x),y) = ack(s(x),y){}]
WORST_CASE(Omega(n^1),?)