* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            ack(0(),x) -> plus(x,s(0()))
            ack(0(),x) -> s(x)
            ack(s(x),0()) -> ack(x,s(0()))
            ack(s(x),s(y)) -> ack(x,ack(s(x),y))
            div(x,y) -> quot(x,y,0())
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(minus(x,y),z) -> minus(x,plus(y,z))
            minus(s(x),s(y)) -> minus(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> plus(x,s(y))
            plus(s(x),y) -> s(plus(y,x))
            quot(0(),s(y),z) -> z
            quot(s(x),s(y),z) -> quot(minus(p(ack(0(),x)),y),s(y),s(z))
            zero(0()) -> true()
            zero(s(x)) -> false()
        - Signature:
            {ack/2,div/2,minus/2,p/1,plus/2,quot/3,zero/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {ack,div,minus,p,plus,quot,zero} and constructors {0,false
            ,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            ack(0(),x) -> plus(x,s(0()))
            ack(0(),x) -> s(x)
            ack(s(x),0()) -> ack(x,s(0()))
            ack(s(x),s(y)) -> ack(x,ack(s(x),y))
            div(x,y) -> quot(x,y,0())
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(minus(x,y),z) -> minus(x,plus(y,z))
            minus(s(x),s(y)) -> minus(x,y)
            p(0()) -> 0()
            p(s(x)) -> x
            plus(0(),y) -> y
            plus(s(x),y) -> plus(x,s(y))
            plus(s(x),y) -> s(plus(y,x))
            quot(0(),s(y),z) -> z
            quot(s(x),s(y),z) -> quot(minus(p(ack(0(),x)),y),s(y),s(z))
            zero(0()) -> true()
            zero(s(x)) -> false()
        - Signature:
            {ack/2,div/2,minus/2,p/1,plus/2,quot/3,zero/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {ack,div,minus,p,plus,quot,zero} and constructors {0,false
            ,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          ack(s(x),y){y -> s(y)} =
            ack(s(x),s(y)) ->^+ ack(x,ack(s(x),y))
              = C[ack(s(x),y) = ack(s(x),y){}]

WORST_CASE(Omega(n^1),?)