* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y eq(0(),0()) -> true() eq(0(),s(x)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) head(add(n,x)) -> n if(false(),x,y,z) -> if2(eq(head(x),min(x)),x,y,z) if(true(),x,y,z) -> z if2(false(),x,y,z) -> mins(tail(x),add(head(x),y),z) if2(true(),x,y,z) -> mins(app(rm(head(x),tail(x)),y),nil(),app(z,add(head(x),nil()))) if_min(false(),add(n,add(m,x))) -> min(add(m,x)) if_min(true(),add(n,add(m,x))) -> min(add(n,x)) if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) if_rm(true(),n,add(m,x)) -> rm(n,x) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) min(add(n,nil())) -> n mins(x,y,z) -> if(null(x),x,y,z) minsort(x) -> mins(x,nil(),nil()) null(add(n,x)) -> false() null(nil()) -> true() rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) rm(n,nil()) -> nil() tail(add(n,x)) -> x tail(nil()) -> nil() - Signature: {app/2,eq/2,head/1,if/4,if2/4,if_min/2,if_rm/3,le/2,min/1,mins/3,minsort/1,null/1,rm/2,tail/1} / {0/0,add/2 ,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,eq,head,if,if2,if_min,if_rm,le,min,mins,minsort,null ,rm,tail} and constructors {0,add,false,nil,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y eq(0(),0()) -> true() eq(0(),s(x)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) head(add(n,x)) -> n if(false(),x,y,z) -> if2(eq(head(x),min(x)),x,y,z) if(true(),x,y,z) -> z if2(false(),x,y,z) -> mins(tail(x),add(head(x),y),z) if2(true(),x,y,z) -> mins(app(rm(head(x),tail(x)),y),nil(),app(z,add(head(x),nil()))) if_min(false(),add(n,add(m,x))) -> min(add(m,x)) if_min(true(),add(n,add(m,x))) -> min(add(n,x)) if_rm(false(),n,add(m,x)) -> add(m,rm(n,x)) if_rm(true(),n,add(m,x)) -> rm(n,x) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) min(add(n,add(m,x))) -> if_min(le(n,m),add(n,add(m,x))) min(add(n,nil())) -> n mins(x,y,z) -> if(null(x),x,y,z) minsort(x) -> mins(x,nil(),nil()) null(add(n,x)) -> false() null(nil()) -> true() rm(n,add(m,x)) -> if_rm(eq(n,m),n,add(m,x)) rm(n,nil()) -> nil() tail(add(n,x)) -> x tail(nil()) -> nil() - Signature: {app/2,eq/2,head/1,if/4,if2/4,if_min/2,if_rm/3,le/2,min/1,mins/3,minsort/1,null/1,rm/2,tail/1} / {0/0,add/2 ,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,eq,head,if,if2,if_min,if_rm,le,min,mins,minsort,null ,rm,tail} and constructors {0,add,false,nil,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: app(y,z){y -> add(x,y)} = app(add(x,y),z) ->^+ add(x,app(y,z)) = C[app(y,z) = app(y,z){}] WORST_CASE(Omega(n^1),?)