* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            help(x,s(y),c) -> if(lt(c,x),x,s(y),c)
            if(false(),x,s(y),c) -> 0()
            if(true(),x,s(y),c) -> s(help(x,s(y),plus(c,s(y))))
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            quot(x,s(y)) -> help(x,s(y),0())
        - Signature:
            {help/3,if/4,lt/2,plus/2,quot/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {help,if,lt,plus,quot} and constructors {0,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            help(x,s(y),c) -> if(lt(c,x),x,s(y),c)
            if(false(),x,s(y),c) -> 0()
            if(true(),x,s(y),c) -> s(help(x,s(y),plus(c,s(y))))
            lt(x,0()) -> false()
            lt(0(),s(y)) -> true()
            lt(s(x),s(y)) -> lt(x,y)
            plus(x,0()) -> x
            plus(x,s(y)) -> s(plus(x,y))
            quot(x,s(y)) -> help(x,s(y),0())
        - Signature:
            {help/3,if/4,lt/2,plus/2,quot/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {help,if,lt,plus,quot} and constructors {0,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          lt(x,y){x -> s(x),y -> s(y)} =
            lt(s(x),s(y)) ->^+ lt(x,y)
              = C[lt(x,y) = lt(x,y){}]

WORST_CASE(Omega(n^1),?)