* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
help(false(),x,y) -> 0()
help(true(),x,y) -> s(minus(x,s(y)))
lt(x,0()) -> false()
lt(0(),s(x)) -> true()
lt(s(x),s(y)) -> lt(x,y)
minus(x,y) -> help(lt(y,x),x,y)
- Signature:
{help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
help(false(),x,y) -> 0()
help(true(),x,y) -> s(minus(x,s(y)))
lt(x,0()) -> false()
lt(0(),s(x)) -> true()
lt(s(x),s(y)) -> lt(x,y)
minus(x,y) -> help(lt(y,x),x,y)
- Signature:
{help/3,lt/2,minus/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {help,lt,minus} and constructors {0,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
lt(x,y){x -> s(x),y -> s(y)} =
lt(s(x),s(y)) ->^+ lt(x,y)
= C[lt(x,y) = lt(x,y){}]
WORST_CASE(Omega(n^1),?)