* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
fac(x) -> help(x,0())
help(x,c) -> if(lt(c,x),x,c)
if(false(),x,c) -> s(0())
if(true(),x,c) -> times(s(c),help(x,s(c)))
lt(x,0()) -> false()
lt(0(),s(x)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{fac/1,help/2,if/3,lt/2} / {0/0,false/0,s/1,times/2,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {fac,help,if,lt} and constructors {0,false,s,times,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
fac(x) -> help(x,0())
help(x,c) -> if(lt(c,x),x,c)
if(false(),x,c) -> s(0())
if(true(),x,c) -> times(s(c),help(x,s(c)))
lt(x,0()) -> false()
lt(0(),s(x)) -> true()
lt(s(x),s(y)) -> lt(x,y)
- Signature:
{fac/1,help/2,if/3,lt/2} / {0/0,false/0,s/1,times/2,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {fac,help,if,lt} and constructors {0,false,s,times,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
lt(x,y){x -> s(x),y -> s(y)} =
lt(s(x),s(y)) ->^+ lt(x,y)
= C[lt(x,y) = lt(x,y){}]
WORST_CASE(Omega(n^1),?)