* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: addList(x,y) -> if(le(0(),min(len(x),len(y))),0(),x,y,nil()) if(false(),c,x,y,z) -> z if(true(),c,xs,ys,z) -> if(le(s(c),min(len(xs),len(ys))),s(c),xs,ys,cons(sum(take(c,xs),take(c,ys)),z)) le(0(),x) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) len(cons(x,xs)) -> s(len(xs)) len(nil()) -> 0() min(0(),y) -> 0() min(s(x),0()) -> 0() min(s(x),s(y)) -> min(x,y) sum(x,0()) -> x sum(x,s(y)) -> s(sum(x,y)) take(0(),cons(y,ys)) -> y take(s(x),cons(y,ys)) -> take(x,ys) - Signature: {addList/2,if/5,le/2,len/1,min/2,sum/2,take/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {addList,if,le,len,min,sum,take} and constructors {0,cons ,false,nil,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: addList(x,y) -> if(le(0(),min(len(x),len(y))),0(),x,y,nil()) if(false(),c,x,y,z) -> z if(true(),c,xs,ys,z) -> if(le(s(c),min(len(xs),len(ys))),s(c),xs,ys,cons(sum(take(c,xs),take(c,ys)),z)) le(0(),x) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) len(cons(x,xs)) -> s(len(xs)) len(nil()) -> 0() min(0(),y) -> 0() min(s(x),0()) -> 0() min(s(x),s(y)) -> min(x,y) sum(x,0()) -> x sum(x,s(y)) -> s(sum(x,y)) take(0(),cons(y,ys)) -> y take(s(x),cons(y,ys)) -> take(x,ys) - Signature: {addList/2,if/5,le/2,len/1,min/2,sum/2,take/2} / {0/0,cons/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {addList,if,le,len,min,sum,take} and constructors {0,cons ,false,nil,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] WORST_CASE(Omega(n^1),?)