* Step 1: Sum WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w)))
h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w))))))
h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
t(t(x)) -> t(c(t(x),x))
- Signature:
{h/3,t/1} / {0/0,c/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {h,t} and constructors {0,c,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w)))
h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w))))))
h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
t(t(x)) -> t(c(t(x),x))
- Signature:
{h/3,t/1} / {0/0,c/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {h,t} and constructors {0,c,s}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
h(x,c(y,z),t(w)) -> h(c(s(y),x),z,t(c(t(w),w)))
h(c(x,y),c(s(z),z),t(w)) -> h(z,c(y,x),t(t(c(x,c(y,t(w))))))
h(c(s(x),c(s(0()),y)),z,t(x)) -> h(y,c(s(0()),c(x,z)),t(t(c(x,s(x)))))
t(t(x)) -> t(c(t(x),x))
All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(1))
+ Considered Problem:
- Strict TRS:
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
- Signature:
{h/3,t/1} / {0/0,c/2,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {h,t} and constructors {0,c,s}
+ Applied Processor:
DependencyPairs {dpKind_ = DT}
+ Details:
We add the following dependency tuples:
Strict DPs
t#(x) -> c_1()
t#(x) -> c_2()
Weak DPs
and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
t#(x) -> c_1()
t#(x) -> c_2()
- Weak TRS:
t(x) -> x
t(x) -> c(0(),c(0(),c(0(),c(0(),c(0(),x)))))
- Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
t#(x) -> c_1()
t#(x) -> c_2()
* Step 5: Trivial WORST_CASE(?,O(1))
+ Considered Problem:
- Strict DPs:
t#(x) -> c_1()
t#(x) -> c_2()
- Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s}
+ Applied Processor:
Trivial
+ Details:
Consider the dependency graph
1:S:t#(x) -> c_1()
2:S:t#(x) -> c_2()
The dependency graph contains no loops, we remove all dependency pairs.
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{h/3,t/1,h#/3,t#/1} / {0/0,c/2,s/1,c_1/0,c_2/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {h#,t#} and constructors {0,c,s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(1))