* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
if(false(),b,x,y) -> logZeroError()
if(true(),false(),x,s(y)) -> y
if(true(),true(),x,y) -> logIter(x,y)
inc(0()) -> s(0())
inc(s(x)) -> s(inc(x))
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
log(x) -> logIter(x,0())
logIter(x,y) -> if(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
- Signature:
{if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2} / {0/0,false/0,logZeroError/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {if,inc,le,log,logIter,minus,quot} and constructors {0
,false,logZeroError,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
if(false(),b,x,y) -> logZeroError()
if(true(),false(),x,s(y)) -> y
if(true(),true(),x,y) -> logIter(x,y)
inc(0()) -> s(0())
inc(s(x)) -> s(inc(x))
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
log(x) -> logIter(x,0())
logIter(x,y) -> if(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
- Signature:
{if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2} / {0/0,false/0,logZeroError/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {if,inc,le,log,logIter,minus,quot} and constructors {0
,false,logZeroError,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
inc(x){x -> s(x)} =
inc(s(x)) ->^+ s(inc(x))
= C[inc(x) = inc(x){}]
WORST_CASE(Omega(n^1),?)