* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: active(f(x)) -> mark(f(f(x))) chk(no(c())) -> active(c()) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) f(active(x)) -> active(f(x)) f(mark(x)) -> mark(f(x)) f(no(x)) -> no(f(x)) mat(f(x),c()) -> no(c()) mat(f(x),f(y())) -> f(mat(x,y())) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) - Signature: {active/1,chk/1,f/1,mat/2,tp/1} / {X/0,c/0,mark/1,no/1,y/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,chk,f,mat,tp} and constructors {X,c,mark,no,y} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(f(x)) -> mark(f(f(x))) chk(no(c())) -> active(c()) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) f(active(x)) -> active(f(x)) f(mark(x)) -> mark(f(x)) f(no(x)) -> no(f(x)) mat(f(x),c()) -> no(c()) mat(f(x),f(y())) -> f(mat(x,y())) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) - Signature: {active/1,chk/1,f/1,mat/2,tp/1} / {X/0,c/0,mark/1,no/1,y/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,chk,f,mat,tp} and constructors {X,c,mark,no,y} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x){x -> mark(x)} = f(mark(x)) ->^+ mark(f(x)) = C[f(x) = f(x){}] ** Step 1.b:1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: active(f(x)) -> mark(f(f(x))) chk(no(c())) -> active(c()) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) f(active(x)) -> active(f(x)) f(mark(x)) -> mark(f(x)) f(no(x)) -> no(f(x)) mat(f(x),c()) -> no(c()) mat(f(x),f(y())) -> f(mat(x,y())) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) - Signature: {active/1,chk/1,f/1,mat/2,tp/1} / {X/0,c/0,mark/1,no/1,y/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,chk,f,mat,tp} and constructors {X,c,mark,no,y} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. X_0() -> 2 X_1() -> 17 active_0(2) -> 1 active_1(3) -> 1 active_2(18) -> 5 c_0() -> 2 c_1() -> 3 c_2() -> 18 chk_0(2) -> 1 chk_1(6) -> 5 f_0(2) -> 1 f_1(2) -> 4 f_1(8) -> 7 f_1(9) -> 8 f_1(10) -> 9 f_1(11) -> 10 f_1(12) -> 11 f_1(13) -> 12 f_1(14) -> 13 f_1(15) -> 14 f_1(16) -> 15 f_1(17) -> 16 mark_0(2) -> 2 mark_1(4) -> 1 mark_1(4) -> 4 mat_0(2,2) -> 1 mat_1(7,2) -> 6 no_0(2) -> 2 no_1(3) -> 6 no_1(4) -> 1 no_1(4) -> 4 tp_0(2) -> 1 tp_1(5) -> 1 y_0() -> 2 ** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: active(f(x)) -> mark(f(f(x))) chk(no(c())) -> active(c()) chk(no(f(x))) -> f(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) f(active(x)) -> active(f(x)) f(mark(x)) -> mark(f(x)) f(no(x)) -> no(f(x)) mat(f(x),c()) -> no(c()) mat(f(x),f(y())) -> f(mat(x,y())) tp(mark(x)) -> tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X())))))))))),x))) - Signature: {active/1,chk/1,f/1,mat/2,tp/1} / {X/0,c/0,mark/1,no/1,y/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,chk,f,mat,tp} and constructors {X,c,mark,no,y} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))