* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            active(f(x)) -> f(active(x))
            active(f(x)) -> mark(x)
            check(x) -> start(match(f(X()),x))
            check(f(x)) -> f(check(x))
            f(found(x)) -> found(f(x))
            f(mark(x)) -> mark(f(x))
            f(ok(x)) -> ok(f(x))
            match(X(),x) -> proper(x)
            match(f(x),f(y)) -> f(match(x,y))
            proper(c()) -> ok(c())
            proper(f(x)) -> f(proper(x))
            start(ok(x)) -> found(x)
            top(active(c())) -> top(mark(c()))
            top(found(x)) -> top(active(x))
            top(mark(x)) -> top(check(x))
        - Signature:
            {active/1,check/1,f/1,match/2,proper/1,start/1,top/1} / {X/0,c/0,found/1,mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,check,f,match,proper,start
            ,top} and constructors {X,c,found,mark,ok}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            active(f(x)) -> f(active(x))
            active(f(x)) -> mark(x)
            check(x) -> start(match(f(X()),x))
            check(f(x)) -> f(check(x))
            f(found(x)) -> found(f(x))
            f(mark(x)) -> mark(f(x))
            f(ok(x)) -> ok(f(x))
            match(X(),x) -> proper(x)
            match(f(x),f(y)) -> f(match(x,y))
            proper(c()) -> ok(c())
            proper(f(x)) -> f(proper(x))
            start(ok(x)) -> found(x)
            top(active(c())) -> top(mark(c()))
            top(found(x)) -> top(active(x))
            top(mark(x)) -> top(check(x))
        - Signature:
            {active/1,check/1,f/1,match/2,proper/1,start/1,top/1} / {X/0,c/0,found/1,mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,check,f,match,proper,start
            ,top} and constructors {X,c,found,mark,ok}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x){x -> found(x)} =
            f(found(x)) ->^+ found(f(x))
              = C[f(x) = f(x){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            active(f(x)) -> f(active(x))
            active(f(x)) -> mark(x)
            check(x) -> start(match(f(X()),x))
            check(f(x)) -> f(check(x))
            f(found(x)) -> found(f(x))
            f(mark(x)) -> mark(f(x))
            f(ok(x)) -> ok(f(x))
            match(X(),x) -> proper(x)
            match(f(x),f(y)) -> f(match(x,y))
            proper(c()) -> ok(c())
            proper(f(x)) -> f(proper(x))
            start(ok(x)) -> found(x)
            top(active(c())) -> top(mark(c()))
            top(found(x)) -> top(active(x))
            top(mark(x)) -> top(check(x))
        - Signature:
            {active/1,check/1,f/1,match/2,proper/1,start/1,top/1} / {X/0,c/0,found/1,mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,check,f,match,proper,start
            ,top} and constructors {X,c,found,mark,ok}
    + Applied Processor:
        Bounds {initialAutomaton = perSymbol, enrichment = match}
    + Details:
        The problem is match-bounded by 3.
        The enriched problem is compatible with follwoing automaton.
          X_0() -> 1
          X_1() -> 15
          X_2() -> 21
          X_3() -> 25
          active_0(1) -> 2
          active_0(3) -> 2
          active_0(6) -> 2
          active_0(7) -> 2
          active_0(9) -> 2
          active_1(1) -> 18
          active_1(3) -> 18
          active_1(6) -> 18
          active_1(7) -> 18
          active_1(9) -> 18
          c_0() -> 3
          c_1() -> 17
          check_0(1) -> 4
          check_0(3) -> 4
          check_0(6) -> 4
          check_0(7) -> 4
          check_0(9) -> 4
          check_1(1) -> 18
          check_1(3) -> 18
          check_1(6) -> 18
          check_1(7) -> 18
          check_1(9) -> 18
          check_2(17) -> 22
          f_0(1) -> 5
          f_0(3) -> 5
          f_0(6) -> 5
          f_0(7) -> 5
          f_0(9) -> 5
          f_1(1) -> 16
          f_1(3) -> 16
          f_1(6) -> 16
          f_1(7) -> 16
          f_1(9) -> 16
          f_1(15) -> 14
          f_2(21) -> 20
          f_3(25) -> 24
          found_0(1) -> 6
          found_0(3) -> 6
          found_0(6) -> 6
          found_0(7) -> 6
          found_0(9) -> 6
          found_1(1) -> 11
          found_1(3) -> 11
          found_1(6) -> 11
          found_1(7) -> 11
          found_1(9) -> 11
          found_1(16) -> 5
          found_1(16) -> 16
          mark_0(1) -> 7
          mark_0(3) -> 7
          mark_0(6) -> 7
          mark_0(7) -> 7
          mark_0(9) -> 7
          mark_1(16) -> 5
          mark_1(16) -> 16
          mark_1(17) -> 18
          match_0(1,1) -> 8
          match_0(1,3) -> 8
          match_0(1,6) -> 8
          match_0(1,7) -> 8
          match_0(1,9) -> 8
          match_0(3,1) -> 8
          match_0(3,3) -> 8
          match_0(3,6) -> 8
          match_0(3,7) -> 8
          match_0(3,9) -> 8
          match_0(6,1) -> 8
          match_0(6,3) -> 8
          match_0(6,6) -> 8
          match_0(6,7) -> 8
          match_0(6,9) -> 8
          match_0(7,1) -> 8
          match_0(7,3) -> 8
          match_0(7,6) -> 8
          match_0(7,7) -> 8
          match_0(7,9) -> 8
          match_0(9,1) -> 8
          match_0(9,3) -> 8
          match_0(9,6) -> 8
          match_0(9,7) -> 8
          match_0(9,9) -> 8
          match_1(14,1) -> 13
          match_1(14,3) -> 13
          match_1(14,6) -> 13
          match_1(14,7) -> 13
          match_1(14,9) -> 13
          match_2(20,1) -> 19
          match_2(20,3) -> 19
          match_2(20,6) -> 19
          match_2(20,7) -> 19
          match_2(20,9) -> 19
          match_3(24,17) -> 23
          ok_0(1) -> 9
          ok_0(3) -> 9
          ok_0(6) -> 9
          ok_0(7) -> 9
          ok_0(9) -> 9
          ok_1(16) -> 5
          ok_1(16) -> 16
          ok_1(17) -> 8
          ok_1(17) -> 10
          proper_0(1) -> 10
          proper_0(3) -> 10
          proper_0(6) -> 10
          proper_0(7) -> 10
          proper_0(9) -> 10
          proper_1(1) -> 8
          proper_1(3) -> 8
          proper_1(6) -> 8
          proper_1(7) -> 8
          proper_1(9) -> 8
          start_0(1) -> 11
          start_0(3) -> 11
          start_0(6) -> 11
          start_0(7) -> 11
          start_0(9) -> 11
          start_1(13) -> 4
          start_2(19) -> 18
          start_3(23) -> 22
          top_0(1) -> 12
          top_0(3) -> 12
          top_0(6) -> 12
          top_0(7) -> 12
          top_0(9) -> 12
          top_1(18) -> 12
          top_2(22) -> 12
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            active(f(x)) -> f(active(x))
            active(f(x)) -> mark(x)
            check(x) -> start(match(f(X()),x))
            check(f(x)) -> f(check(x))
            f(found(x)) -> found(f(x))
            f(mark(x)) -> mark(f(x))
            f(ok(x)) -> ok(f(x))
            match(X(),x) -> proper(x)
            match(f(x),f(y)) -> f(match(x,y))
            proper(c()) -> ok(c())
            proper(f(x)) -> f(proper(x))
            start(ok(x)) -> found(x)
            top(active(c())) -> top(mark(c()))
            top(found(x)) -> top(active(x))
            top(mark(x)) -> top(check(x))
        - Signature:
            {active/1,check/1,f/1,match/2,proper/1,start/1,top/1} / {X/0,c/0,found/1,mark/1,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {active,check,f,match,proper,start
            ,top} and constructors {X,c,found,mark,ok}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))