(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: active, start, proper, top, f, check, match
The following defined symbols can occur below the 0th argument of active: active, start, proper, top, f, check, match
The following defined symbols can occur below the 0th argument of f: active, start, proper, top, f, check, match
The following defined symbols can occur below the 0th argument of start: active, start, proper, top, f, check, match
The following defined symbols can occur below the 0th argument of match: active, start, proper, top, f, check, match
The following defined symbols can occur below the 0th argument of check: active, start, proper, top, f, check, match
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
match(f(x), f(y)) → f(match(x, y))
proper(f(x)) → f(proper(x))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
proper(c) → ok(c)
f(mark(x)) → mark(f(x))
f(ok(x)) → ok(f(x))
active(f(x)) → f(active(x))
top(mark(x)) → top(check(x))
top(active(c)) → top(mark(c))
top(found(x)) → top(active(x))
check(f(x)) → f(check(x))
f(found(x)) → found(f(x))
active(f(x)) → mark(x)
start(ok(x)) → found(x)
match(X, x) → proper(x)
check(x) → start(match(f(X), x))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7]
transitions:
c0() → 0
ok0(0) → 0
mark0(0) → 0
found0(0) → 0
X0() → 0
proper0(0) → 1
f0(0) → 2
active0(0) → 3
top0(0) → 4
check0(0) → 5
start0(0) → 6
match0(0, 0) → 7
c1() → 8
ok1(8) → 1
f1(0) → 9
mark1(9) → 2
f1(0) → 10
ok1(10) → 2
check1(0) → 11
top1(11) → 4
active1(0) → 12
top1(12) → 4
f1(0) → 13
found1(13) → 2
found1(0) → 6
proper1(0) → 7
X1() → 16
f1(16) → 15
match1(15, 0) → 14
start1(14) → 5
ok1(8) → 7
mark1(9) → 9
mark1(9) → 10
mark1(9) → 13
ok1(10) → 9
ok1(10) → 10
ok1(10) → 13
c1() → 18
mark1(18) → 17
top1(17) → 4
found1(13) → 9
found1(13) → 10
found1(13) → 13
X2() → 21
f2(21) → 20
match2(20, 0) → 19
start2(19) → 11
check2(18) → 22
top2(22) → 4
X3() → 25
f3(25) → 24
match3(24, 18) → 23
start3(23) → 22
(4) BOUNDS(1, n^1)
(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(c) → ok(c)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
top(mark(z0)) → top(check(z0))
top(active(c)) → top(mark(c))
top(found(z0)) → top(active(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
start(ok(z0)) → found(z0)
match(X, z0) → proper(z0)
Tuples:
PROPER(c) → c1
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
ACTIVE(f(z0)) → c6
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
CHECK(z0) → c11(START(match(f(X), z0)), MATCH(f(X), z0), F(X))
START(ok(z0)) → c12
MATCH(X, z0) → c13(PROPER(z0))
S tuples:
PROPER(c) → c1
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
ACTIVE(f(z0)) → c6
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
CHECK(z0) → c11(START(match(f(X), z0)), MATCH(f(X), z0), F(X))
START(ok(z0)) → c12
MATCH(X, z0) → c13(PROPER(z0))
K tuples:none
Defined Rule Symbols:
proper, f, active, top, check, start, match
Defined Pair Symbols:
PROPER, F, ACTIVE, TOP, CHECK, START, MATCH
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
MATCH(X, z0) → c13(PROPER(z0))
START(ok(z0)) → c12
ACTIVE(f(z0)) → c6
CHECK(z0) → c11(START(match(f(X), z0)), MATCH(f(X), z0), F(X))
PROPER(c) → c1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
proper(c) → ok(c)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
top(mark(z0)) → top(check(z0))
top(active(c)) → top(mark(c))
top(found(z0)) → top(active(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
start(ok(z0)) → found(z0)
match(X, z0) → proper(z0)
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:none
Defined Rule Symbols:
proper, f, active, top, check, start, match
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(9) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
proper(c) → ok(c)
top(mark(z0)) → top(check(z0))
top(active(c)) → top(mark(c))
top(found(z0)) → top(active(z0))
start(ok(z0)) → found(z0)
match(X, z0) → proper(z0)
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:none
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(active(c)) → c8(TOP(mark(c)))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHECK(x1)) = 0
POL(F(x1)) = 0
POL(TOP(x1)) = x1
POL(X) = 0
POL(active(x1)) = x1
POL(c) = [1]
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = 0
POL(f(x1)) = 0
POL(found(x1)) = x1
POL(mark(x1)) = 0
POL(match(x1, x2)) = 0
POL(ok(x1)) = 0
POL(start(x1)) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHECK(x1)) = 0
POL(F(x1)) = 0
POL(TOP(x1)) = x1
POL(X) = 0
POL(active(x1)) = 0
POL(c) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = 0
POL(f(x1)) = x1
POL(found(x1)) = [1] + x1
POL(mark(x1)) = 0
POL(match(x1, x2)) = 0
POL(ok(x1)) = 0
POL(start(x1)) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHECK(x1)) = 0
POL(F(x1)) = 0
POL(TOP(x1)) = x1
POL(X) = 0
POL(active(x1)) = [1]
POL(c) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = 0
POL(f(x1)) = x1
POL(found(x1)) = [1]
POL(mark(x1)) = [1]
POL(match(x1, x2)) = 0
POL(ok(x1)) = 0
POL(start(x1)) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [2] + [2]x1
POL(CHECK(x1)) = x1
POL(F(x1)) = x1
POL(TOP(x1)) = x1 + x12
POL(X) = [1]
POL(active(x1)) = x1
POL(c) = [1]
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = 0
POL(f(x1)) = [2]x1
POL(found(x1)) = [1] + x1
POL(mark(x1)) = x1
POL(match(x1, x2)) = [1]
POL(ok(x1)) = [2] + x1
POL(start(x1)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [1] + x1
POL(CHECK(x1)) = 0
POL(F(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(X) = [2]
POL(active(x1)) = x1
POL(c) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = x1
POL(f(x1)) = [1] + x1
POL(found(x1)) = [1] + x1
POL(mark(x1)) = x1
POL(match(x1, x2)) = x2
POL(ok(x1)) = [2] + x1
POL(start(x1)) = x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
We considered the (Usable) Rules:
check(f(z0)) → f(check(z0))
active(f(z0)) → mark(z0)
f(found(z0)) → found(f(z0))
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
active(f(z0)) → f(active(z0))
check(z0) → start(match(f(X), z0))
And the Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHECK(x1)) = [2]x1
POL(F(x1)) = 0
POL(TOP(x1)) = [2]x12
POL(X) = [1]
POL(active(x1)) = [2] + x1
POL(c) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(check(x1)) = [1] + x1
POL(f(x1)) = [1] + x1
POL(found(x1)) = [2] + x1
POL(mark(x1)) = [2] + x1
POL(match(x1, x2)) = [1] + x2
POL(ok(x1)) = x1
POL(start(x1)) = x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, ACTIVE, TOP, CHECK
Compound Symbols:
c2, c3, c4, c5, c7, c8, c9, c10
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
z0)) →
c5(
F(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, CHECK, ACTIVE
Compound Symbols:
c2, c3, c4, c7, c8, c9, c10, c5
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c7(
TOP(
check(
z0)),
CHECK(
z0)) by
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(TOP(start(match(f(X), z0))), CHECK(z0))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(TOP(start(match(f(X), z0))), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, CHECK, ACTIVE
Compound Symbols:
c2, c3, c4, c8, c9, c10, c5, c7
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, CHECK, ACTIVE
Compound Symbols:
c2, c3, c4, c8, c9, c10, c5, c7, c7
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
CHECK(
f(
z0)) →
c10(
F(
check(
z0)),
CHECK(
z0)) by
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(F(start(match(f(X), z0))), CHECK(z0))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(F(start(match(f(X), z0))), CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c7, c10
(31) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(f(active(z0))), ACTIVE(f(z0)))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(CHECK(z0))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c7, c10, c10
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
f(
f(
z0))) →
c5(
F(
f(
active(
z0))),
ACTIVE(
f(
z0))) by
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(f(z0))) → c7(TOP(f(check(z0))), CHECK(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c7, c10, c10
(35) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
f(
z0))) →
c7(
TOP(
f(
check(
z0))),
CHECK(
f(
z0))) by
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(TOP(f(start(match(f(X), z0)))), CHECK(f(z0)))
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(TOP(f(start(match(f(X), z0)))), CHECK(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c10, c10, c7
(37) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(f(z0))) → c10(F(f(check(z0))), CHECK(f(z0)))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c10, c10, c7
(39) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
CHECK(
f(
f(
z0))) →
c10(
F(
f(
check(
z0))),
CHECK(
f(
z0))) by
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(F(f(start(match(f(X), z0)))), CHECK(f(z0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(F(f(start(match(f(X), z0)))), CHECK(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c10, c7, c10
(41) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c10, c7, c10
(43) CdtRewritingProof (BOTH BOUNDS(ID, ID) transformation)
Used rewriting to replace ACTIVE(f(f(f(z0)))) → c5(F(f(mark(z0))), ACTIVE(f(f(z0)))) by ACTIVE(f(f(f(z0)))) → c5(F(mark(f(z0))), ACTIVE(f(f(z0))))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(z0)) → c2(F(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
ACTIVE(f(f(f(z0)))) → c5(F(mark(f(z0))), ACTIVE(f(f(z0))))
S tuples:
F(mark(z0)) → c2(F(z0))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c2, c3, c4, c8, c9, c5, c7, c10, c7, c10
(45) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
mark(
z0)) →
c2(
F(
z0)) by
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
ACTIVE(f(f(f(z0)))) → c5(F(mark(f(z0))), ACTIVE(f(f(z0))))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c3, c4, c8, c9, c5, c7, c10, c7, c10, c2
(47) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(ok(z0)) → c3(F(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c3, c4, c8, c9, c5, c7, c10, c7, c10, c2, c5
(49) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
ok(
z0)) →
c3(
F(
z0)) by
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(found(z0)) → c4(F(z0))
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
F(found(z0)) → c4(F(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F, TOP, ACTIVE, CHECK
Compound Symbols:
c4, c8, c9, c5, c7, c10, c7, c10, c2, c5, c3
(51) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
found(
z0)) →
c4(
F(
z0)) by
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
ACTIVE(f(f(z0))) → c5(F(mark(z0)), ACTIVE(f(z0)))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, ACTIVE, CHECK, F
Compound Symbols:
c8, c9, c5, c7, c10, c7, c10, c2, c5, c3, c4
(53) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
ACTIVE(
f(
f(
z0))) →
c5(
F(
mark(
z0)),
ACTIVE(
f(
z0))) by
ACTIVE(f(f(f(y0)))) → c5(F(mark(f(y0))), ACTIVE(f(f(y0))))
ACTIVE(f(f(f(f(y0))))) → c5(F(mark(f(f(y0)))), ACTIVE(f(f(f(y0)))))
ACTIVE(f(f(mark(y0)))) → c5(F(mark(mark(y0))), ACTIVE(f(mark(y0))))
ACTIVE(f(f(ok(y0)))) → c5(F(mark(ok(y0))), ACTIVE(f(ok(y0))))
ACTIVE(f(f(found(y0)))) → c5(F(mark(found(y0))), ACTIVE(f(found(y0))))
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(y0)))) → c5(F(mark(f(y0))), ACTIVE(f(f(y0))))
ACTIVE(f(f(f(f(y0))))) → c5(F(mark(f(f(y0)))), ACTIVE(f(f(f(y0)))))
ACTIVE(f(f(mark(y0)))) → c5(F(mark(mark(y0))), ACTIVE(f(mark(y0))))
ACTIVE(f(f(ok(y0)))) → c5(F(mark(ok(y0))), ACTIVE(f(ok(y0))))
ACTIVE(f(f(found(y0)))) → c5(F(mark(found(y0))), ACTIVE(f(found(y0))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(TOP(check(z0)), CHECK(z0))
ACTIVE(f(z0)) → c5(F(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(F(check(z0)), CHECK(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, CHECK, ACTIVE, F
Compound Symbols:
c8, c9, c7, c10, c5, c7, c10, c2, c5, c3, c4
(55) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 3 leading nodes:
ACTIVE(f(f(found(y0)))) → c5(F(mark(found(y0))), ACTIVE(f(found(y0))))
ACTIVE(f(f(ok(y0)))) → c5(F(mark(ok(y0))), ACTIVE(f(ok(y0))))
ACTIVE(f(f(mark(y0)))) → c5(F(mark(mark(y0))), ACTIVE(f(mark(y0))))
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(y0)))) → c5(F(mark(f(y0))), ACTIVE(f(f(y0))))
ACTIVE(f(f(f(f(y0))))) → c5(F(mark(f(f(y0)))), ACTIVE(f(f(f(y0)))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, CHECK, ACTIVE, F
Compound Symbols:
c8, c9, c7, c10, c5, c7, c10, c2, c5, c3, c4
(57) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
TOP(mark(z0)) → c7(CHECK(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(f(y0))))) → c5(ACTIVE(f(f(f(y0)))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, CHECK, ACTIVE, F
Compound Symbols:
c8, c9, c7, c10, c5, c7, c10, c2, c5, c3, c4
(59) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
TOP(
mark(
z0)) →
c7(
CHECK(
z0)) by
TOP(mark(f(y0))) → c7(CHECK(f(y0)))
TOP(mark(f(f(f(y0))))) → c7(CHECK(f(f(f(y0)))))
TOP(mark(f(f(y0)))) → c7(CHECK(f(f(y0))))
(60) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(f(y0))))) → c5(ACTIVE(f(f(f(y0)))))
TOP(mark(f(f(f(y0))))) → c7(CHECK(f(f(f(y0)))))
TOP(mark(f(f(y0)))) → c7(CHECK(f(f(y0))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(active(c)) → c8(TOP(mark(c)))
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, CHECK, ACTIVE, F
Compound Symbols:
c8, c9, c10, c5, c7, c7, c10, c2, c5, c3, c4
(61) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(active(c)) → c8(TOP(mark(c)))
(62) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(f(y0))))) → c5(ACTIVE(f(f(f(y0)))))
TOP(mark(f(f(f(y0))))) → c7(CHECK(f(f(f(y0)))))
TOP(mark(f(f(y0)))) → c7(CHECK(f(f(y0))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
TOP, CHECK, ACTIVE, F
Compound Symbols:
c9, c10, c5, c7, c7, c10, c2, c5, c3, c4
(63) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
found(
z0)) →
c9(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(found(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
TOP(found(f(z0))) → c9(TOP(mark(z0)), ACTIVE(f(z0)))
(64) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
ACTIVE(f(f(f(f(y0))))) → c5(ACTIVE(f(f(f(y0)))))
TOP(mark(f(f(f(y0))))) → c7(CHECK(f(f(f(y0)))))
TOP(mark(f(f(y0)))) → c7(CHECK(f(f(y0))))
TOP(found(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
TOP(found(f(z0))) → c9(TOP(mark(z0)), ACTIVE(f(z0)))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
TOP(found(z0)) → c9(TOP(active(z0)), ACTIVE(z0))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
CHECK, ACTIVE, TOP, F
Compound Symbols:
c10, c5, c7, c7, c10, c2, c5, c3, c4, c9
(65) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
CHECK(f(z0)) → c10(CHECK(z0))
ACTIVE(f(f(f(z0)))) → c5(F(f(f(active(z0)))), ACTIVE(f(f(z0))))
TOP(mark(f(f(z0)))) → c7(TOP(f(f(check(z0)))), CHECK(f(f(z0))))
TOP(mark(f(z0))) → c7(CHECK(f(z0)))
CHECK(f(f(f(z0)))) → c10(F(f(f(check(z0)))), CHECK(f(f(z0))))
CHECK(f(f(z0))) → c10(CHECK(f(z0)))
ACTIVE(f(f(f(z0)))) → c5(ACTIVE(f(f(z0))))
ACTIVE(f(f(f(f(y0))))) → c5(ACTIVE(f(f(f(y0)))))
TOP(mark(f(f(f(y0))))) → c7(CHECK(f(f(f(y0)))))
TOP(mark(f(f(y0)))) → c7(CHECK(f(f(y0))))
TOP(found(f(z0))) → c9(TOP(f(active(z0))), ACTIVE(f(z0)))
TOP(found(f(z0))) → c9(TOP(mark(z0)), ACTIVE(f(z0)))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
Tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:
active, f, check
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4
(67) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(f(z0)) → f(active(z0))
active(f(z0)) → mark(z0)
f(mark(z0)) → mark(f(z0))
f(ok(z0)) → ok(f(z0))
f(found(z0)) → found(f(z0))
check(f(z0)) → f(check(z0))
check(z0) → start(match(f(X), z0))
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
S tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
K tuples:
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4
(69) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
We considered the (Usable) Rules:none
And the Tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(found(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [1] + x1
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
S tuples:none
K tuples:
F(ok(ok(y0))) → c3(F(ok(y0)))
F(ok(found(y0))) → c3(F(found(y0)))
F(ok(mark(mark(y0)))) → c3(F(mark(mark(y0))))
F(ok(mark(ok(y0)))) → c3(F(mark(ok(y0))))
F(ok(mark(found(y0)))) → c3(F(mark(found(y0))))
F(found(found(y0))) → c4(F(found(y0)))
F(found(mark(mark(y0)))) → c4(F(mark(mark(y0))))
F(found(mark(ok(y0)))) → c4(F(mark(ok(y0))))
F(found(mark(found(y0)))) → c4(F(mark(found(y0))))
F(found(ok(ok(y0)))) → c4(F(ok(ok(y0))))
F(found(ok(found(y0)))) → c4(F(ok(found(y0))))
F(found(ok(mark(mark(y0))))) → c4(F(ok(mark(mark(y0)))))
F(found(ok(mark(ok(y0))))) → c4(F(ok(mark(ok(y0)))))
F(found(ok(mark(found(y0))))) → c4(F(ok(mark(found(y0)))))
F(mark(mark(y0))) → c2(F(mark(y0)))
F(mark(ok(y0))) → c2(F(ok(y0)))
F(mark(found(y0))) → c2(F(found(y0)))
Defined Rule Symbols:none
Defined Pair Symbols:
F
Compound Symbols:
c2, c3, c4
(71) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(72) BOUNDS(1, 1)