* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: check(y){y -> cons(x,y)} = check(cons(x,y)) ->^+ cons(x,check(y)) = C[check(y) = check(y){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(check) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [5] p(nil) = [0] p(rest) = [1] x1 + [0] p(sent) = [1] x1 + [5] p(top) = [1] x1 + [0] Following rules are strictly oriented: top(sent(x)) = [1] x + [5] > [1] x + [0] = top(check(rest(x))) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1] x + [1] y + [5] >= [1] x + [1] y + [5] = cons(x,y) check(cons(x,y)) = [1] x + [1] y + [5] >= [1] x + [1] y + [5] = cons(x,check(y)) check(cons(x,y)) = [1] x + [1] y + [5] >= [1] x + [1] y + [5] = cons(check(x),y) check(rest(x)) = [1] x + [0] >= [1] x + [0] = rest(check(x)) check(sent(x)) = [1] x + [5] >= [1] x + [5] = sent(check(x)) rest(cons(x,y)) = [1] x + [1] y + [5] >= [1] y + [5] = sent(y) rest(nil()) = [0] >= [5] = sent(nil()) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) - Weak TRS: top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(check) = [1] x1 + [0] p(cons) = [1] x1 + [1] x2 + [1] p(nil) = [9] p(rest) = [1] x1 + [0] p(sent) = [1] x1 + [0] p(top) = [1] x1 + [0] Following rules are strictly oriented: rest(cons(x,y)) = [1] x + [1] y + [1] > [1] y + [0] = sent(y) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1] x + [1] y + [1] >= [1] x + [1] y + [1] = cons(x,y) check(cons(x,y)) = [1] x + [1] y + [1] >= [1] x + [1] y + [1] = cons(x,check(y)) check(cons(x,y)) = [1] x + [1] y + [1] >= [1] x + [1] y + [1] = cons(check(x),y) check(rest(x)) = [1] x + [0] >= [1] x + [0] = rest(check(x)) check(sent(x)) = [1] x + [0] >= [1] x + [0] = sent(check(x)) rest(nil()) = [9] >= [9] = sent(nil()) top(sent(x)) = [1] x + [0] >= [1] x + [0] = top(check(rest(x))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(nil()) -> sent(nil()) - Weak TRS: rest(cons(x,y)) -> sent(y) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: Following symbols are considered usable: all TcT has computed the following interpretation: p(check) = [1] x1 + [8] p(cons) = [1] x1 + [1] x2 + [8] p(nil) = [1] p(rest) = [1] x1 + [0] p(sent) = [1] x1 + [8] p(top) = [1] x1 + [8] Following rules are strictly oriented: check(cons(x,y)) = [1] x + [1] y + [16] > [1] x + [1] y + [8] = cons(x,y) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1] x + [1] y + [16] >= [1] x + [1] y + [16] = cons(x,check(y)) check(cons(x,y)) = [1] x + [1] y + [16] >= [1] x + [1] y + [16] = cons(check(x),y) check(rest(x)) = [1] x + [8] >= [1] x + [8] = rest(check(x)) check(sent(x)) = [1] x + [16] >= [1] x + [16] = sent(check(x)) rest(cons(x,y)) = [1] x + [1] y + [8] >= [1] y + [8] = sent(y) rest(nil()) = [1] >= [9] = sent(nil()) top(sent(x)) = [1] x + [16] >= [1] x + [16] = top(check(rest(x))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(nil()) -> sent(nil()) - Weak TRS: check(cons(x,y)) -> cons(x,y) rest(cons(x,y)) -> sent(y) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): Following symbols are considered usable: {check,rest,top} TcT has computed the following interpretation: p(check) = [1 1] x_1 + [0] [0 1] [0] p(cons) = [1 0] x_1 + [1 3] x_2 + [0] [0 1] [0 1] [1] p(nil) = [0] [0] p(rest) = [1 0] x_1 + [0] [0 2] [0] p(sent) = [1 2] x_1 + [0] [0 1] [0] p(top) = [4 0] x_1 + [6] [0 0] [0] Following rules are strictly oriented: check(cons(x,y)) = [1 1] x + [1 4] y + [1] [0 1] [0 1] [1] > [1 0] x + [1 4] y + [0] [0 1] [0 1] [1] = cons(x,check(y)) check(cons(x,y)) = [1 1] x + [1 4] y + [1] [0 1] [0 1] [1] > [1 1] x + [1 3] y + [0] [0 1] [0 1] [1] = cons(check(x),y) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1 1] x + [1 4] y + [1] [0 1] [0 1] [1] >= [1 0] x + [1 3] y + [0] [0 1] [0 1] [1] = cons(x,y) check(rest(x)) = [1 2] x + [0] [0 2] [0] >= [1 1] x + [0] [0 2] [0] = rest(check(x)) check(sent(x)) = [1 3] x + [0] [0 1] [0] >= [1 3] x + [0] [0 1] [0] = sent(check(x)) rest(cons(x,y)) = [1 0] x + [1 3] y + [0] [0 2] [0 2] [2] >= [1 2] y + [0] [0 1] [0] = sent(y) rest(nil()) = [0] [0] >= [0] [0] = sent(nil()) top(sent(x)) = [4 8] x + [6] [0 0] [0] >= [4 8] x + [6] [0 0] [0] = top(check(rest(x))) ** Step 1.b:5: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(nil()) -> sent(nil()) - Weak TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) rest(cons(x,y)) -> sent(y) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 3))), miDimension = 4, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 3))): Following symbols are considered usable: {check,rest,top} TcT has computed the following interpretation: p(check) = [1 0 0 0] [0] [0 1 0 0] x_1 + [0] [0 1 0 0] [0] [0 0 0 0] [0] p(cons) = [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x_1 + [0 0 0 1] x_2 + [0] [0 0 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] p(nil) = [2] [0] [2] [2] p(rest) = [1 0 0 2] [0] [0 2 0 0] x_1 + [0] [0 0 2 0] [0] [0 0 0 0] [0] p(sent) = [1 2 0 0] [0] [0 0 0 0] x_1 + [0] [0 0 0 2] [0] [0 0 0 0] [0] p(top) = [2 0 2 0] [0] [0 0 0 0] x_1 + [0] [2 0 2 1] [0] [1 0 1 0] [0] Following rules are strictly oriented: rest(nil()) = [6] [0] [4] [0] > [2] [0] [4] [0] = sent(nil()) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 1] y + [0] [0 1 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] >= [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 1] y + [0] [0 0 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] = cons(x,y) check(cons(x,y)) = [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 1] y + [0] [0 1 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] >= [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 0] y + [0] [0 0 0 0] [0 0 0 0] [0] [0 0 0 0] [0 0 0 0] [0] = cons(x,check(y)) check(cons(x,y)) = [1 2 0 1] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 1] y + [0] [0 1 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] >= [1 2 0 0] [1 2 0 0] [0] [0 1 0 0] x + [0 0 0 1] y + [0] [0 0 0 0] [0 0 0 1] [0] [0 0 0 0] [0 0 0 0] [0] = cons(check(x),y) check(rest(x)) = [1 0 0 2] [0] [0 2 0 0] x + [0] [0 2 0 0] [0] [0 0 0 0] [0] >= [1 0 0 0] [0] [0 2 0 0] x + [0] [0 2 0 0] [0] [0 0 0 0] [0] = rest(check(x)) check(sent(x)) = [1 2 0 0] [0] [0 0 0 0] x + [0] [0 0 0 0] [0] [0 0 0 0] [0] >= [1 2 0 0] [0] [0 0 0 0] x + [0] [0 0 0 0] [0] [0 0 0 0] [0] = sent(check(x)) rest(cons(x,y)) = [1 2 0 1] [1 2 0 0] [0] [0 2 0 0] x + [0 0 0 2] y + [0] [0 0 0 0] [0 0 0 2] [0] [0 0 0 0] [0 0 0 0] [0] >= [1 2 0 0] [0] [0 0 0 0] y + [0] [0 0 0 2] [0] [0 0 0 0] [0] = sent(y) top(sent(x)) = [2 4 0 4] [0] [0 0 0 0] x + [0] [2 4 0 4] [0] [1 2 0 2] [0] >= [2 4 0 4] [0] [0 0 0 0] x + [0] [2 4 0 4] [0] [1 2 0 2] [0] = top(check(rest(x))) ** Step 1.b:6: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) - Weak TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 3))), miDimension = 4, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 3))): Following symbols are considered usable: {check,rest,top} TcT has computed the following interpretation: p(check) = [1 2 0 0] [0] [0 1 0 0] x_1 + [0] [0 1 0 0] [0] [0 0 0 0] [0] p(cons) = [1 1 0 3] [1 3 0 0] [0] [0 1 0 1] x_1 + [0 1 0 3] x_2 + [1] [0 0 0 0] [0 0 0 3] [1] [0 0 0 0] [0 0 0 0] [0] p(nil) = [2] [0] [0] [2] p(rest) = [1 0 0 0] [1] [0 1 0 1] x_1 + [0] [0 0 1 3] [0] [0 0 0 0] [0] p(sent) = [1 3 0 0] [1] [0 1 0 0] x_1 + [1] [0 0 0 3] [0] [0 0 0 0] [0] p(top) = [2 0 2 0] [0] [0 0 0 0] x_1 + [2] [0 0 0 0] [1] [0 0 0 0] [0] Following rules are strictly oriented: check(sent(x)) = [1 5 0 0] [3] [0 1 0 0] x + [1] [0 1 0 0] [1] [0 0 0 0] [0] > [1 5 0 0] [1] [0 1 0 0] x + [1] [0 0 0 0] [0] [0 0 0 0] [0] = sent(check(x)) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1 3 0 5] [1 5 0 6] [2] [0 1 0 1] x + [0 1 0 3] y + [1] [0 1 0 1] [0 1 0 3] [1] [0 0 0 0] [0 0 0 0] [0] >= [1 1 0 3] [1 3 0 0] [0] [0 1 0 1] x + [0 1 0 3] y + [1] [0 0 0 0] [0 0 0 3] [1] [0 0 0 0] [0 0 0 0] [0] = cons(x,y) check(cons(x,y)) = [1 3 0 5] [1 5 0 6] [2] [0 1 0 1] x + [0 1 0 3] y + [1] [0 1 0 1] [0 1 0 3] [1] [0 0 0 0] [0 0 0 0] [0] >= [1 1 0 3] [1 5 0 0] [0] [0 1 0 1] x + [0 1 0 0] y + [1] [0 0 0 0] [0 0 0 0] [1] [0 0 0 0] [0 0 0 0] [0] = cons(x,check(y)) check(cons(x,y)) = [1 3 0 5] [1 5 0 6] [2] [0 1 0 1] x + [0 1 0 3] y + [1] [0 1 0 1] [0 1 0 3] [1] [0 0 0 0] [0 0 0 0] [0] >= [1 3 0 0] [1 3 0 0] [0] [0 1 0 0] x + [0 1 0 3] y + [1] [0 0 0 0] [0 0 0 3] [1] [0 0 0 0] [0 0 0 0] [0] = cons(check(x),y) check(rest(x)) = [1 2 0 2] [1] [0 1 0 1] x + [0] [0 1 0 1] [0] [0 0 0 0] [0] >= [1 2 0 0] [1] [0 1 0 0] x + [0] [0 1 0 0] [0] [0 0 0 0] [0] = rest(check(x)) rest(cons(x,y)) = [1 1 0 3] [1 3 0 0] [1] [0 1 0 1] x + [0 1 0 3] y + [1] [0 0 0 0] [0 0 0 3] [1] [0 0 0 0] [0 0 0 0] [0] >= [1 3 0 0] [1] [0 1 0 0] y + [1] [0 0 0 3] [0] [0 0 0 0] [0] = sent(y) rest(nil()) = [3] [2] [6] [0] >= [3] [1] [6] [0] = sent(nil()) top(sent(x)) = [2 6 0 6] [2] [0 0 0 0] x + [2] [0 0 0 0] [1] [0 0 0 0] [0] >= [2 6 0 6] [2] [0 0 0 0] x + [2] [0 0 0 0] [1] [0 0 0 0] [0] = top(check(rest(x))) ** Step 1.b:7: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: check(rest(x)) -> rest(check(x)) - Weak TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 3))), miDimension = 4, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 3))): Following symbols are considered usable: {check,rest,top} TcT has computed the following interpretation: p(check) = [1 0 2 0] [0] [0 0 2 0] x_1 + [0] [0 0 1 0] [0] [0 0 0 0] [0] p(cons) = [1 0 2 0] [1 0 3 2] [3] [0 0 0 0] x_1 + [0 0 2 2] x_2 + [2] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] p(nil) = [2] [0] [0] [2] p(rest) = [1 0 0 2] [0] [0 1 0 2] x_1 + [2] [0 0 1 0] [1] [0 0 0 0] [0] p(sent) = [1 0 3 1] [2] [0 0 0 2] x_1 + [2] [0 0 1 0] [1] [0 0 0 0] [0] p(top) = [2 1 0 0] [1] [2 1 1 2] x_1 + [0] [2 1 1 0] [0] [0 0 2 0] [2] Following rules are strictly oriented: check(rest(x)) = [1 0 2 2] [2] [0 0 2 0] x + [2] [0 0 1 0] [1] [0 0 0 0] [0] > [1 0 2 0] [0] [0 0 2 0] x + [2] [0 0 1 0] [1] [0 0 0 0] [0] = rest(check(x)) Following rules are (at-least) weakly oriented: check(cons(x,y)) = [1 0 4 0] [1 0 5 6] [7] [0 0 2 0] x + [0 0 2 4] y + [4] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] >= [1 0 2 0] [1 0 3 2] [3] [0 0 0 0] x + [0 0 2 2] y + [2] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] = cons(x,y) check(cons(x,y)) = [1 0 4 0] [1 0 5 6] [7] [0 0 2 0] x + [0 0 2 4] y + [4] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] >= [1 0 2 0] [1 0 5 0] [3] [0 0 0 0] x + [0 0 2 0] y + [2] [0 0 1 0] [0 0 1 0] [2] [0 0 0 0] [0 0 0 0] [0] = cons(x,check(y)) check(cons(x,y)) = [1 0 4 0] [1 0 5 6] [7] [0 0 2 0] x + [0 0 2 4] y + [4] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] >= [1 0 4 0] [1 0 3 2] [3] [0 0 0 0] x + [0 0 2 2] y + [2] [0 0 1 0] [0 0 1 2] [2] [0 0 0 0] [0 0 0 0] [0] = cons(check(x),y) check(sent(x)) = [1 0 5 1] [4] [0 0 2 0] x + [2] [0 0 1 0] [1] [0 0 0 0] [0] >= [1 0 5 0] [2] [0 0 0 0] x + [2] [0 0 1 0] [1] [0 0 0 0] [0] = sent(check(x)) rest(cons(x,y)) = [1 0 2 0] [1 0 3 2] [3] [0 0 0 0] x + [0 0 2 2] y + [4] [0 0 1 0] [0 0 1 2] [3] [0 0 0 0] [0 0 0 0] [0] >= [1 0 3 1] [2] [0 0 0 2] y + [2] [0 0 1 0] [1] [0 0 0 0] [0] = sent(y) rest(nil()) = [6] [6] [1] [0] >= [6] [6] [1] [0] = sent(nil()) top(sent(x)) = [2 0 6 4] [7] [2 0 7 4] x + [7] [2 0 7 4] [7] [0 0 2 0] [4] >= [2 0 6 4] [7] [2 0 7 4] x + [7] [2 0 7 4] [7] [0 0 2 0] [4] = top(check(rest(x))) ** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: check(cons(x,y)) -> cons(x,y) check(cons(x,y)) -> cons(x,check(y)) check(cons(x,y)) -> cons(check(x),y) check(rest(x)) -> rest(check(x)) check(sent(x)) -> sent(check(x)) rest(cons(x,y)) -> sent(y) rest(nil()) -> sent(nil()) top(sent(x)) -> top(check(rest(x))) - Signature: {check/1,rest/1,top/1} / {cons/2,nil/0,sent/1} - Obligation: innermost runtime complexity wrt. defined symbols {check,rest,top} and constructors {cons,nil,sent} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))