* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            int(x,x) -> cons(x,nil())
            int(0(),s(y)) -> cons(0(),int(s(0()),s(y)))
            int(s(x),0()) -> nil()
            int(s(x),s(y)) -> intlist(int(x,y))
            intlist(cons(x,y)) -> cons(s(x),intlist(y))
            intlist(cons(x,nil())) -> cons(s(x),nil())
            intlist(nil()) -> nil()
        - Signature:
            {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            int(x,x) -> cons(x,nil())
            int(0(),s(y)) -> cons(0(),int(s(0()),s(y)))
            int(s(x),0()) -> nil()
            int(s(x),s(y)) -> intlist(int(x,y))
            intlist(cons(x,y)) -> cons(s(x),intlist(y))
            intlist(cons(x,nil())) -> cons(s(x),nil())
            intlist(nil()) -> nil()
        - Signature:
            {int/2,intlist/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {int,intlist} and constructors {0,cons,nil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          int(x,y){x -> s(x),y -> s(y)} =
            int(s(x),s(y)) ->^+ intlist(int(x,y))
              = C[int(x,y) = int(x,y){}]

WORST_CASE(Omega(n^1),?)