* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() div(div(x,y),z) -> div(x,times(y,z)) divides(y,x) -> eq(x,times(div(x,y),y)) eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) if(false(),x,y) -> pr(x,y) if(true(),x,y) -> false() p(s(x)) -> x plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,p(s(y)))) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) plus(s(x),y) -> s(plus(p(s(x)),y)) pr(x,s(0())) -> true() pr(x,s(s(y))) -> if(divides(s(s(y)),x),x,s(y)) prime(s(s(x))) -> pr(s(s(x)),s(x)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,divides/2,eq/2,if/3,p/1,plus/2,pr/2,prime/1,quot/3,times/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {div,divides,eq,if,p,plus,pr,prime,quot ,times} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: div(x,y) -> quot(x,y,y) div(0(),y) -> 0() div(div(x,y),z) -> div(x,times(y,z)) divides(y,x) -> eq(x,times(div(x,y),y)) eq(0(),0()) -> true() eq(0(),s(y)) -> false() eq(s(x),0()) -> false() eq(s(x),s(y)) -> eq(x,y) if(false(),x,y) -> pr(x,y) if(true(),x,y) -> false() p(s(x)) -> x plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,p(s(y)))) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) plus(s(x),y) -> s(plus(p(s(x)),y)) pr(x,s(0())) -> true() pr(x,s(s(y))) -> if(divides(s(s(y)),x),x,s(y)) prime(s(s(x))) -> pr(s(s(x)),s(x)) quot(x,0(),s(z)) -> s(div(x,s(z))) quot(0(),s(y),z) -> 0() quot(s(x),s(y),z) -> quot(x,y,z) times(0(),y) -> 0() times(s(x),y) -> plus(y,times(x,y)) times(s(0()),y) -> y - Signature: {div/2,divides/2,eq/2,if/3,p/1,plus/2,pr/2,prime/1,quot/3,times/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {div,divides,eq,if,p,plus,pr,prime,quot ,times} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: eq(x,y){x -> s(x),y -> s(y)} = eq(s(x),s(y)) ->^+ eq(x,y) = C[eq(x,y) = eq(x,y){}] WORST_CASE(Omega(n^1),?)