* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),x,y) -> gcd(minus(y,x),x)
            if_gcd(true(),x,y) -> gcd(minus(x,y),y)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus,pred} and constructors {0,false,s
            ,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),x,y) -> gcd(minus(y,x),x)
            if_gcd(true(),x,y) -> gcd(minus(x,y),y)
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus,pred} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          le(x,y){x -> s(x),y -> s(y)} =
            le(s(x),s(y)) ->^+ le(x,y)
              = C[le(x,y) = le(x,y){}]

WORST_CASE(Omega(n^1),?)