(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3).


The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3).


The TRS R consists of the following rules:

le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(0, y) → 0 [1]
minus(s(x), y) → if_minus(le(s(x), y), s(x), y) [1]
if_minus(true, s(x), y) → 0 [1]
if_minus(false, s(x), y) → s(minus(x, y)) [1]
quot(0, s(y)) → 0 [1]
quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) [1]
log(s(0)) → 0 [1]
log(s(s(x))) → s(log(s(quot(x, s(s(0)))))) [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(0, y) → 0 [1]
minus(s(x), y) → if_minus(le(s(x), y), s(x), y) [1]
if_minus(true, s(x), y) → 0 [1]
if_minus(false, s(x), y) → s(minus(x, y)) [1]
quot(0, s(y)) → 0 [1]
quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) [1]
log(s(0)) → 0 [1]
log(s(s(x))) → s(log(s(quot(x, s(s(0)))))) [1]

The TRS has the following type information:
le :: 0:s → 0:s → true:false
0 :: 0:s
true :: true:false
s :: 0:s → 0:s
false :: true:false
minus :: 0:s → 0:s → 0:s
if_minus :: true:false → 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s
log :: 0:s → 0:s

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


log

(c) The following functions are completely defined:

le
minus
quot
if_minus

Due to the following rules being added:

quot(v0, v1) → 0 [0]
if_minus(v0, v1, v2) → 0 [0]

And the following fresh constants: none

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(0, y) → 0 [1]
minus(s(x), y) → if_minus(le(s(x), y), s(x), y) [1]
if_minus(true, s(x), y) → 0 [1]
if_minus(false, s(x), y) → s(minus(x, y)) [1]
quot(0, s(y)) → 0 [1]
quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) [1]
log(s(0)) → 0 [1]
log(s(s(x))) → s(log(s(quot(x, s(s(0)))))) [1]
quot(v0, v1) → 0 [0]
if_minus(v0, v1, v2) → 0 [0]

The TRS has the following type information:
le :: 0:s → 0:s → true:false
0 :: 0:s
true :: true:false
s :: 0:s → 0:s
false :: true:false
minus :: 0:s → 0:s → 0:s
if_minus :: true:false → 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s
log :: 0:s → 0:s

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(0, y) → 0 [1]
minus(s(x), 0) → if_minus(false, s(x), 0) [2]
minus(s(x), s(y')) → if_minus(le(x, y'), s(x), s(y')) [2]
if_minus(true, s(x), y) → 0 [1]
if_minus(false, s(x), y) → s(minus(x, y)) [1]
quot(0, s(y)) → 0 [1]
quot(s(0), s(y)) → s(quot(0, s(y))) [2]
quot(s(s(x')), s(y)) → s(quot(if_minus(le(s(x'), y), s(x'), y), s(y))) [2]
log(s(0)) → 0 [1]
log(s(s(0))) → s(log(s(0))) [2]
log(s(s(s(x'')))) → s(log(s(s(quot(minus(x'', s(0)), s(s(0))))))) [2]
log(s(s(x))) → s(log(s(0))) [1]
quot(v0, v1) → 0 [0]
if_minus(v0, v1, v2) → 0 [0]

The TRS has the following type information:
le :: 0:s → 0:s → true:false
0 :: 0:s
true :: true:false
s :: 0:s → 0:s
false :: true:false
minus :: 0:s → 0:s → 0:s
if_minus :: true:false → 0:s → 0:s → 0:s
quot :: 0:s → 0:s → 0:s
log :: 0:s → 0:s

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0
true => 1
false => 0

(10) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z' = 1 + x, z'' = y, z = 1, x >= 0, y >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0, z = 0
le(z, z') -{ 1 }→ le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
le(z, z') -{ 1 }→ 1 :|: y >= 0, z = 0, z' = y
le(z, z') -{ 1 }→ 0 :|: x >= 0, z = 1 + x, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: x >= 0, z = 1 + (1 + x)
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(x'', 1 + 0), 1 + (1 + 0)))) :|: x'' >= 0, z = 1 + (1 + (1 + x''))
minus(z, z') -{ 2 }→ if_minus(le(x, y'), 1 + x, 1 + y') :|: x >= 0, y' >= 0, z = 1 + x, z' = 1 + y'
minus(z, z') -{ 2 }→ if_minus(0, 1 + x, 0) :|: x >= 0, z = 1 + x, z' = 0
minus(z, z') -{ 1 }→ 0 :|: y >= 0, z = 0, z' = y
quot(z, z') -{ 1 }→ 0 :|: z' = 1 + y, y >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
quot(z, z') -{ 2 }→ 1 + quot(if_minus(le(1 + x', y), 1 + x', y), 1 + y) :|: z' = 1 + y, x' >= 0, y >= 0, z = 1 + (1 + x')
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0

(11) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(12) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 }→ if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 }→ 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

(13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ le }
{ minus, if_minus }
{ quot }
{ log }

(14) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 }→ if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 }→ 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {le}, {minus,if_minus}, {quot}, {log}

(15) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: le
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(16) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 }→ if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 }→ 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {le}, {minus,if_minus}, {quot}, {log}
Previous analysis results are:
le: runtime: ?, size: O(1) [1]

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: le
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(18) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 }→ if_minus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 }→ 1 + quot(if_minus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {minus,if_minus}, {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]

(19) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(20) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 + z' }→ if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 + z' }→ 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {minus,if_minus}, {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]

(21) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

Computed SIZE bound using CoFloCo for: if_minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

(22) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 + z' }→ if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 + z' }→ 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {minus,if_minus}, {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: ?, size: O(n1) [z]
if_minus: runtime: ?, size: O(n1) [z']

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 3 + 3·z + z·z' + z'

Computed RUNTIME bound using PUBS for: if_minus
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 1 + 3·z' + z'·z''

(24) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ 2 }→ 1 + log(1 + (1 + quot(minus(z - 3, 1 + 0), 1 + (1 + 0)))) :|: z - 3 >= 0
minus(z, z') -{ 2 + z' }→ if_minus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 2 }→ if_minus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 2 + z' }→ 1 + quot(if_minus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']

(25) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(26) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -6 + 4·z }→ 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 1 + 2·z + z·z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']

(27) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: quot
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

(28) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -6 + 4·z }→ 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 1 + 2·z + z·z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {quot}, {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']
quot: runtime: ?, size: O(n1) [z]

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: quot
after applying outer abstraction to obtain an ITS,
resulting in: O(n3) with polynomial bound: 1 + 2·z + 2·z2 + z2·z'

(30) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -6 + 4·z }→ 1 + log(1 + (1 + quot(s5, 1 + (1 + 0)))) :|: s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 1 + 2·z + z·z' }→ 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0
quot(z, z') -{ 2 }→ 1 + quot(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0

Function symbols to be analyzed: {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']
quot: runtime: O(n3) [1 + 2·z + 2·z2 + z2·z'], size: O(n1) [z]

(31) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(32) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -5 + 2·s5 + 4·s52 + 4·z }→ 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= 1 * s5, s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 3 }→ 1 + s6 :|: s6 >= 0, s6 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
quot(z, z') -{ 2 + 2·s4 + 2·s42 + s42·z' + 2·z + z·z' }→ 1 + s7 :|: s7 >= 0, s7 <= 1 * s4, s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0

Function symbols to be analyzed: {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']
quot: runtime: O(n3) [1 + 2·z + 2·z2 + z2·z'], size: O(n1) [z]

(33) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: log
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z

(34) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -5 + 2·s5 + 4·s52 + 4·z }→ 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= 1 * s5, s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 3 }→ 1 + s6 :|: s6 >= 0, s6 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
quot(z, z') -{ 2 + 2·s4 + 2·s42 + s42·z' + 2·z + z·z' }→ 1 + s7 :|: s7 >= 0, s7 <= 1 * s4, s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0

Function symbols to be analyzed: {log}
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']
quot: runtime: O(n3) [1 + 2·z + 2·z2 + z2·z'], size: O(n1) [z]
log: runtime: ?, size: O(n1) [z]

(35) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: log
after applying outer abstraction to obtain an ITS,
resulting in: O(n3) with polynomial bound: 1 + 3·z + 6·z2 + 4·z3

(36) Obligation:

Complexity RNTS consisting of the following rules:

if_minus(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' - 1 >= 0, z'' >= 0
if_minus(z, z', z'') -{ 0 }→ 0 :|: z >= 0, z' >= 0, z'' >= 0
if_minus(z, z', z'') -{ 1 + 3·z' + z'·z'' }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * (z' - 1), z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
log(z) -{ 1 }→ 0 :|: z = 1 + 0
log(z) -{ 2 }→ 1 + log(1 + 0) :|: z = 1 + (1 + 0)
log(z) -{ 1 }→ 1 + log(1 + 0) :|: z - 2 >= 0
log(z) -{ -5 + 2·s5 + 4·s52 + 4·z }→ 1 + log(1 + (1 + s8)) :|: s8 >= 0, s8 <= 1 * s5, s5 >= 0, s5 <= 1 * (z - 3), z - 3 >= 0
minus(z, z') -{ 3 + 3·z }→ s1 :|: s1 >= 0, s1 <= 1 * (1 + (z - 1)), z - 1 >= 0, z' = 0
minus(z, z') -{ 3 + 3·z + z·z' + z' }→ s2 :|: s2 >= 0, s2 <= 1 * (1 + (z - 1)), s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
quot(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
quot(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
quot(z, z') -{ 3 }→ 1 + s6 :|: s6 >= 0, s6 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
quot(z, z') -{ 2 + 2·s4 + 2·s42 + s42·z' + 2·z + z·z' }→ 1 + s7 :|: s7 >= 0, s7 <= 1 * s4, s4 >= 0, s4 <= 1 * (1 + (z - 2)), s'' >= 0, s'' <= 1, z - 2 >= 0, z' - 1 >= 0

Function symbols to be analyzed:
Previous analysis results are:
le: runtime: O(n1) [1 + z'], size: O(1) [1]
minus: runtime: O(n2) [3 + 3·z + z·z' + z'], size: O(n1) [z]
if_minus: runtime: O(n2) [1 + 3·z' + z'·z''], size: O(n1) [z']
quot: runtime: O(n3) [1 + 2·z + 2·z2 + z2·z'], size: O(n1) [z]
log: runtime: O(n3) [1 + 3·z + 6·z2 + 4·z3], size: O(n1) [z]

(37) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(38) BOUNDS(1, n^3)