* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,if_minus,le,minus} and constructors {0,false,s
            ,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,if_minus,le,minus} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          le(x,y){x -> s(x),y -> s(y)} =
            le(s(x),s(y)) ->^+ le(x,y)
              = C[le(x,y) = le(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,if_minus,le,minus} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          gcd#(0(),y) -> c_1()
          gcd#(s(x),0()) -> c_2()
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          if_minus#(true(),s(x),y) -> c_7()
          le#(0(),y) -> c_8()
          le#(s(x),0()) -> c_9()
          le#(s(x),s(y)) -> c_10(le#(x,y))
          minus#(0(),y) -> c_11()
          minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            if_minus#(true(),s(x),y) -> c_7()
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(0(),y) -> c_11()
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          if_minus(false(),s(x),y) -> s(minus(x,y))
          if_minus(true(),s(x),y) -> 0()
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(0(),y) -> 0()
          minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
          gcd#(0(),y) -> c_1()
          gcd#(s(x),0()) -> c_2()
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          if_minus#(true(),s(x),y) -> c_7()
          le#(0(),y) -> c_8()
          le#(s(x),0()) -> c_9()
          le#(s(x),s(y)) -> c_10(le#(x,y))
          minus#(0(),y) -> c_11()
          minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            if_minus#(true(),s(x),y) -> c_7()
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(0(),y) -> c_11()
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,7,8,9,11}
        by application of
          Pre({1,2,7,8,9,11}) = {3,4,5,6,10,12}.
        Here rules are labelled as follows:
          1: gcd#(0(),y) -> c_1()
          2: gcd#(s(x),0()) -> c_2()
          3: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          4: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          5: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          6: if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          7: if_minus#(true(),s(x),y) -> c_7()
          8: le#(0(),y) -> c_8()
          9: le#(s(x),0()) -> c_9()
          10: le#(s(x),s(y)) -> c_10(le#(x,y))
          11: minus#(0(),y) -> c_11()
          12: minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            if_minus#(true(),s(x),y) -> c_7()
            le#(0(),y) -> c_8()
            le#(s(x),0()) -> c_9()
            minus#(0(),y) -> c_11()
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):5
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
             -->_2 le#(s(x),0()) -> c_9():11
             -->_2 le#(0(),y) -> c_8():10
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):6
             -->_2 minus#(0(),y) -> c_11():12
             -->_1 gcd#(0(),y) -> c_1():7
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):6
             -->_2 minus#(0(),y) -> c_11():12
             -->_1 gcd#(0(),y) -> c_1():7
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
             -->_1 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):6
             -->_1 minus#(0(),y) -> c_11():12
          
          5:S:le#(s(x),s(y)) -> c_10(le#(x,y))
             -->_1 le#(s(x),0()) -> c_9():11
             -->_1 le#(0(),y) -> c_8():10
             -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):5
          
          6:S:minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
             -->_2 le#(s(x),0()) -> c_9():11
             -->_1 if_minus#(true(),s(x),y) -> c_7():9
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):5
             -->_1 if_minus#(false(),s(x),y) -> c_6(minus#(x,y)):4
          
          7:W:gcd#(0(),y) -> c_1()
             
          
          8:W:gcd#(s(x),0()) -> c_2()
             
          
          9:W:if_minus#(true(),s(x),y) -> c_7()
             
          
          10:W:le#(0(),y) -> c_8()
             
          
          11:W:le#(s(x),0()) -> c_9()
             
          
          12:W:minus#(0(),y) -> c_11()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: gcd#(s(x),0()) -> c_2()
          7: gcd#(0(),y) -> c_1()
          12: minus#(0(),y) -> c_11()
          9: if_minus#(true(),s(x),y) -> c_7()
          10: le#(0(),y) -> c_8()
          11: le#(s(x),0()) -> c_9()
** Step 1.b:5: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        and a lower component
          if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          le#(s(x),s(y)) -> c_10(le#(x,y))
          minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        Further, following extension rules are added to the lower component.
          gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
          gcd#(s(x),s(y)) -> le#(y,x)
          if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
          if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
          if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
          if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
*** Step 1.b:5.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          
        Consider the set of all dependency pairs
          1: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          2: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          3: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:5.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {if_minus,minus,gcd#,if_gcd#,if_minus#,le#,minus#}
        TcT has computed the following interpretation:
                  p(0) = [7]                           
              p(false) = [0]                           
                p(gcd) = [1] x2 + [0]                  
             p(if_gcd) = [1] x3 + [1]                  
           p(if_minus) = [1] x2 + [3]                  
                 p(le) = [3] x1 + [0]                  
              p(minus) = [1] x1 + [3]                  
                  p(s) = [1] x1 + [4]                  
               p(true) = [0]                           
               p(gcd#) = [1] x1 + [1] x2 + [8]         
            p(if_gcd#) = [1] x2 + [1] x3 + [7]         
          p(if_minus#) = [1] x1 + [2] x2 + [1] x3 + [1]
                p(le#) = [1]                           
             p(minus#) = [8]                           
                p(c_1) = [0]                           
                p(c_2) = [1]                           
                p(c_3) = [1] x1 + [0]                  
                p(c_4) = [1] x1 + [0]                  
                p(c_5) = [1] x1 + [0]                  
                p(c_6) = [2] x1 + [1]                  
                p(c_7) = [0]                           
                p(c_8) = [1]                           
                p(c_9) = [1]                           
               p(c_10) = [1] x1 + [1]                  
               p(c_11) = [1]                           
               p(c_12) = [1] x1 + [1] x2 + [0]         
        
        Following rules are strictly oriented:
        gcd#(s(x),s(y)) = [1] x + [1] y + [16]                    
                        > [1] x + [1] y + [15]                    
                        = c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        
        
        Following rules are (at-least) weakly oriented:
        if_gcd#(false(),s(x),s(y)) =  [1] x + [1] y + [15]                  
                                   >= [1] x + [1] y + [15]                  
                                   =  c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        
         if_gcd#(true(),s(x),s(y)) =  [1] x + [1] y + [15]                  
                                   >= [1] x + [1] y + [15]                  
                                   =  c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        
          if_minus(false(),s(x),y) =  [1] x + [7]                           
                                   >= [1] x + [7]                           
                                   =  s(minus(x,y))                         
        
           if_minus(true(),s(x),y) =  [1] x + [7]                           
                                   >= [7]                                   
                                   =  0()                                   
        
                      minus(0(),y) =  [10]                                  
                                   >= [7]                                   
                                   =  0()                                   
        
                     minus(s(x),y) =  [1] x + [7]                           
                                   >= [1] x + [7]                           
                                   =  if_minus(le(s(x),y),s(x),y)           
        
**** Step 1.b:5.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:5.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:W:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:W:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          3: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          2: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
**** Step 1.b:5.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:5.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak DPs:
            gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
            gcd#(s(x),s(y)) -> le#(y,x)
            if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
            if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
            if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
            if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: le#(s(x),s(y)) -> c_10(le#(x,y))
          3: minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          
        Consider the set of all dependency pairs
          1: if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          2: le#(s(x),s(y)) -> c_10(le#(x,y))
          3: minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          4: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
          5: gcd#(s(x),s(y)) -> le#(y,x)
          6: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
          7: if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
          8: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
          9: if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
        Processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2,3}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:5.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak DPs:
            gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
            gcd#(s(x),s(y)) -> le#(y,x)
            if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
            if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
            if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
            if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1},
          uargs(c_10) = {1},
          uargs(c_12) = {1,2}
        
        Following symbols are considered usable:
          {if_minus,minus,gcd#,if_gcd#,if_minus#,le#,minus#}
        TcT has computed the following interpretation:
                  p(0) = [0]                      
                         [0]                      
              p(false) = [0]                      
                         [0]                      
                p(gcd) = [1 2] x1 + [0]           
                         [0 1]      [0]           
             p(if_gcd) = [0]                      
                         [0]                      
           p(if_minus) = [1 0] x2 + [0]           
                         [0 1]      [0]           
                 p(le) = [0]                      
                         [0]                      
              p(minus) = [1 0] x1 + [0]           
                         [0 1]      [0]           
                  p(s) = [1 1] x1 + [1]           
                         [0 1]      [1]           
               p(true) = [0]                      
                         [0]                      
               p(gcd#) = [2 2] x1 + [2 0] x2 + [1]
                         [1 2]      [1 1]      [0]
            p(if_gcd#) = [2 0] x2 + [2 0] x3 + [3]
                         [1 1]      [1 1]      [1]
          p(if_minus#) = [2 0] x2 + [0 0] x3 + [1]
                         [0 1]      [2 1]      [1]
                p(le#) = [0 1] x1 + [0]           
                         [0 0]      [0]           
             p(minus#) = [2 2] x1 + [0 0] x2 + [3]
                         [0 0]      [0 2]      [2]
                p(c_1) = [0]                      
                         [0]                      
                p(c_2) = [0]                      
                         [0]                      
                p(c_3) = [0 1] x1 + [1 2] x2 + [0]
                         [0 2]      [0 0]      [0]
                p(c_4) = [0]                      
                         [2]                      
                p(c_5) = [0 0] x1 + [0]           
                         [1 2]      [2]           
                p(c_6) = [1 0] x1 + [0]           
                         [0 0]      [2]           
                p(c_7) = [1]                      
                         [0]                      
                p(c_8) = [0]                      
                         [0]                      
                p(c_9) = [0]                      
                         [1]                      
               p(c_10) = [1 0] x1 + [0]           
                         [0 0]      [0]           
               p(c_11) = [1]                      
                         [0]                      
               p(c_12) = [1 0] x1 + [1 0] x2 + [1]
                         [0 0]      [0 0]      [2]
        
        Following rules are strictly oriented:
        le#(s(x),s(y)) = [0 1] x + [1]                                 
                         [0 0]     [0]                                 
                       > [0 1] x + [0]                                 
                         [0 0]     [0]                                 
                       = c_10(le#(x,y))                                
        
        minus#(s(x),y) = [2 4] x + [0 0] y + [7]                       
                         [0 0]     [0 2]     [2]                       
                       > [2 3] x + [5]                                 
                         [0 0]     [2]                                 
                       = c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        
        
        Following rules are (at-least) weakly oriented:
                   gcd#(s(x),s(y)) =  [2 4] x + [2 2] y + [7]    
                                      [1 3]     [1 2]     [5]    
                                   >= [2 2] x + [2 2] y + [7]    
                                      [1 2]     [1 2]     [5]    
                                   =  if_gcd#(le(y,x),s(x),s(y)) 
        
                   gcd#(s(x),s(y)) =  [2 4] x + [2 2] y + [7]    
                                      [1 3]     [1 2]     [5]    
                                   >= [0 1] y + [0]              
                                      [0 0]     [0]              
                                   =  le#(y,x)                   
        
        if_gcd#(false(),s(x),s(y)) =  [2 2] x + [2 2] y + [7]    
                                      [1 2]     [1 2]     [5]    
                                   >= [2 2] x + [2 2] y + [3]    
                                      [1 2]     [1 2]     [2]    
                                   =  gcd#(minus(y,x),s(x))      
        
        if_gcd#(false(),s(x),s(y)) =  [2 2] x + [2 2] y + [7]    
                                      [1 2]     [1 2]     [5]    
                                   >= [0 0] x + [2 2] y + [3]    
                                      [0 2]     [0 0]     [2]    
                                   =  minus#(y,x)                
        
         if_gcd#(true(),s(x),s(y)) =  [2 2] x + [2 2] y + [7]    
                                      [1 2]     [1 2]     [5]    
                                   >= [2 2] x + [2 2] y + [3]    
                                      [1 2]     [1 2]     [2]    
                                   =  gcd#(minus(x,y),s(y))      
        
         if_gcd#(true(),s(x),s(y)) =  [2 2] x + [2 2] y + [7]    
                                      [1 2]     [1 2]     [5]    
                                   >= [2 2] x + [0 0] y + [3]    
                                      [0 0]     [0 2]     [2]    
                                   =  minus#(x,y)                
        
         if_minus#(false(),s(x),y) =  [2 2] x + [0 0] y + [3]    
                                      [0 1]     [2 1]     [2]    
                                   >= [2 2] x + [3]              
                                      [0 0]     [2]              
                                   =  c_6(minus#(x,y))           
        
          if_minus(false(),s(x),y) =  [1 1] x + [1]              
                                      [0 1]     [1]              
                                   >= [1 1] x + [1]              
                                      [0 1]     [1]              
                                   =  s(minus(x,y))              
        
           if_minus(true(),s(x),y) =  [1 1] x + [1]              
                                      [0 1]     [1]              
                                   >= [0]                        
                                      [0]                        
                                   =  0()                        
        
                      minus(0(),y) =  [0]                        
                                      [0]                        
                                   >= [0]                        
                                      [0]                        
                                   =  0()                        
        
                     minus(s(x),y) =  [1 1] x + [1]              
                                      [0 1]     [1]              
                                   >= [1 1] x + [1]              
                                      [0 1]     [1]              
                                   =  if_minus(le(s(x),y),s(x),y)
        
**** Step 1.b:5.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
        - Weak DPs:
            gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
            gcd#(s(x),s(y)) -> le#(y,x)
            if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
            if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
            if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
            if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:5.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
            gcd#(s(x),s(y)) -> le#(y,x)
            if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
            if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
            if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
            if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
            if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
            le#(s(x),s(y)) -> c_10(le#(x,y))
            minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
             -->_1 if_gcd#(true(),s(x),s(y)) -> minus#(x,y):6
             -->_1 if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y)):5
             -->_1 if_gcd#(false(),s(x),s(y)) -> minus#(y,x):4
             -->_1 if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x)):3
          
          2:W:gcd#(s(x),s(y)) -> le#(y,x)
             -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):8
          
          3:W:if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
             -->_1 gcd#(s(x),s(y)) -> le#(y,x):2
             -->_1 gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)):1
          
          4:W:if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
             -->_1 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):9
          
          5:W:if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
             -->_1 gcd#(s(x),s(y)) -> le#(y,x):2
             -->_1 gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y)):1
          
          6:W:if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
             -->_1 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):9
          
          7:W:if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
             -->_1 minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y)):9
          
          8:W:le#(s(x),s(y)) -> c_10(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_10(le#(x,y)):8
          
          9:W:minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
             -->_2 le#(s(x),s(y)) -> c_10(le#(x,y)):8
             -->_1 if_minus#(false(),s(x),y) -> c_6(minus#(x,y)):7
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: gcd#(s(x),s(y)) -> if_gcd#(le(y,x),s(x),s(y))
          5: if_gcd#(true(),s(x),s(y)) -> gcd#(minus(x,y),s(y))
          3: if_gcd#(false(),s(x),s(y)) -> gcd#(minus(y,x),s(x))
          4: if_gcd#(false(),s(x),s(y)) -> minus#(y,x)
          2: gcd#(s(x),s(y)) -> le#(y,x)
          6: if_gcd#(true(),s(x),s(y)) -> minus#(x,y)
          9: minus#(s(x),y) -> c_12(if_minus#(le(s(x),y),s(x),y),le#(s(x),y))
          7: if_minus#(false(),s(x),y) -> c_6(minus#(x,y))
          8: le#(s(x),s(y)) -> c_10(le#(x,y))
**** Step 1.b:5.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            if_minus(false(),s(x),y) -> s(minus(x,y))
            if_minus(true(),s(x),y) -> 0()
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(0(),y) -> 0()
            minus(s(x),y) -> if_minus(le(s(x),y),s(x),y)
        - Signature:
            {gcd/2,if_gcd/3,if_minus/3,le/2,minus/2,gcd#/2,if_gcd#/3,if_minus#/3,le#/2,minus#/2} / {0/0,false/0,s/1
            ,true/0,c_1/0,c_2/0,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/0,c_9/0,c_10/1,c_11/0,c_12/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,if_minus#,le#,minus#} and constructors {0
            ,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))