* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(false) = [0] p(gcd) = [1] x1 + [1] x2 + [7] p(if_gcd) = [1] x1 + [1] x2 + [1] x3 + [0] p(le) = [0] p(minus) = [1] x1 + [3] p(s) = [1] x1 + [2] p(true) = [0] Following rules are strictly oriented: gcd(0(),y) = [1] y + [9] > [1] y + [0] = y gcd(s(x),0()) = [1] x + [11] > [1] x + [2] = s(x) gcd(s(x),s(y)) = [1] x + [1] y + [11] > [1] x + [1] y + [4] = if_gcd(le(y,x),s(x),s(y)) minus(x,0()) = [1] x + [3] > [1] x + [0] = x minus(s(x),s(y)) = [1] x + [5] > [1] x + [3] = minus(x,y) Following rules are (at-least) weakly oriented: if_gcd(false(),s(x),s(y)) = [1] x + [1] y + [4] >= [1] x + [1] y + [12] = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = [1] x + [1] y + [4] >= [1] x + [1] y + [12] = gcd(minus(x,y),s(y)) le(0(),y) = [0] >= [0] = true() le(s(x),0()) = [0] >= [0] = false() le(s(x),s(y)) = [0] >= [0] = le(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(false) = [4] p(gcd) = [1] x1 + [1] x2 + [2] p(if_gcd) = [1] x1 + [1] x2 + [1] x3 + [0] p(le) = [1] p(minus) = [1] x1 + [4] p(s) = [1] x1 + [4] p(true) = [4] Following rules are strictly oriented: if_gcd(false(),s(x),s(y)) = [1] x + [1] y + [12] > [1] x + [1] y + [10] = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = [1] x + [1] y + [12] > [1] x + [1] y + [10] = gcd(minus(x,y),s(y)) Following rules are (at-least) weakly oriented: gcd(0(),y) = [1] y + [2] >= [1] y + [0] = y gcd(s(x),0()) = [1] x + [6] >= [1] x + [4] = s(x) gcd(s(x),s(y)) = [1] x + [1] y + [10] >= [1] x + [1] y + [9] = if_gcd(le(y,x),s(x),s(y)) le(0(),y) = [1] >= [4] = true() le(s(x),0()) = [1] >= [4] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(x,0()) = [1] x + [4] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [8] >= [1] x + [4] = minus(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [4] p(false) = [7] p(gcd) = [1] x1 + [1] x2 + [4] p(if_gcd) = [1] x1 + [1] x2 + [1] x3 + [0] p(le) = [4] p(minus) = [1] x1 + [0] p(s) = [1] x1 + [1] p(true) = [3] Following rules are strictly oriented: le(0(),y) = [4] > [3] = true() Following rules are (at-least) weakly oriented: gcd(0(),y) = [1] y + [8] >= [1] y + [0] = y gcd(s(x),0()) = [1] x + [9] >= [1] x + [1] = s(x) gcd(s(x),s(y)) = [1] x + [1] y + [6] >= [1] x + [1] y + [6] = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = [1] x + [1] y + [9] >= [1] x + [1] y + [5] = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = [1] x + [1] y + [5] >= [1] x + [1] y + [5] = gcd(minus(x,y),s(y)) le(s(x),0()) = [4] >= [7] = false() le(s(x),s(y)) = [4] >= [4] = le(x,y) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [5] p(false) = [4] p(gcd) = [1] x1 + [1] x2 + [6] p(if_gcd) = [1] x1 + [1] x2 + [1] x3 + [1] p(le) = [5] p(minus) = [1] x1 + [3] p(s) = [1] x1 + [4] p(true) = [4] Following rules are strictly oriented: le(s(x),0()) = [5] > [4] = false() Following rules are (at-least) weakly oriented: gcd(0(),y) = [1] y + [11] >= [1] y + [0] = y gcd(s(x),0()) = [1] x + [15] >= [1] x + [4] = s(x) gcd(s(x),s(y)) = [1] x + [1] y + [14] >= [1] x + [1] y + [14] = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = [1] x + [1] y + [13] >= [1] x + [1] y + [13] = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = [1] x + [1] y + [13] >= [1] x + [1] y + [13] = gcd(minus(x,y),s(y)) le(0(),y) = [5] >= [4] = true() le(s(x),s(y)) = [5] >= [5] = le(x,y) minus(x,0()) = [1] x + [3] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [7] >= [1] x + [3] = minus(x,y) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:5: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: le(s(x),s(y)) -> le(x,y) - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(gcd) = {1}, uargs(if_gcd) = {1} Following symbols are considered usable: {gcd,if_gcd,le,minus} TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(gcd) = 3 + 4*x1 + 2*x1*x2 + 6*x2 p(if_gcd) = 5 + x1 + 4*x2 + 2*x2*x3 + 4*x3 p(le) = 2*x1 p(minus) = x1 p(s) = 1 + x1 p(true) = 0 Following rules are strictly oriented: le(s(x),s(y)) = 2 + 2*x > 2*x = le(x,y) Following rules are (at-least) weakly oriented: gcd(0(),y) = 3 + 6*y >= y = y gcd(s(x),0()) = 7 + 4*x >= 1 + x = s(x) gcd(s(x),s(y)) = 15 + 6*x + 2*x*y + 8*y >= 15 + 6*x + 2*x*y + 8*y = if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) = 15 + 6*x + 2*x*y + 6*y >= 9 + 6*x + 2*x*y + 6*y = gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) = 15 + 6*x + 2*x*y + 6*y >= 9 + 6*x + 2*x*y + 6*y = gcd(minus(x,y),s(y)) le(0(),y) = 0 >= 0 = true() le(s(x),0()) = 2 + 2*x >= 0 = false() minus(x,0()) = x >= x = x minus(s(x),s(y)) = 1 + x >= x = minus(x,y) ** Step 1.b:6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: gcd(0(),y) -> y gcd(s(x),0()) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {gcd/2,if_gcd/3,le/2,minus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))