* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus,pred} and constructors {0,false,s
            ,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus,pred} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          le(x,y){x -> s(x),y -> s(y)} =
            le(s(x),s(y)) ->^+ le(x,y)
              = C[le(x,y) = le(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd,if_gcd,le,minus,pred} and constructors {0,false,s
            ,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          gcd#(0(),y) -> c_1()
          gcd#(s(x),0()) -> c_2()
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          le#(0(),y) -> c_6()
          le#(s(x),0()) -> c_7()
          le#(s(x),s(y)) -> c_8(le#(x,y))
          minus#(x,0()) -> c_9()
          minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
          pred#(s(x)) -> c_11()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,0()) -> c_9()
            minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
            pred#(s(x)) -> c_11()
        - Weak TRS:
            gcd(0(),y) -> y
            gcd(s(x),0()) -> s(x)
            gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y))
            if_gcd(false(),s(x),s(y)) -> gcd(minus(y,x),s(x))
            if_gcd(true(),s(x),s(y)) -> gcd(minus(x,y),s(y))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
          gcd#(0(),y) -> c_1()
          gcd#(s(x),0()) -> c_2()
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          le#(0(),y) -> c_6()
          le#(s(x),0()) -> c_7()
          le#(s(x),s(y)) -> c_8(le#(x,y))
          minus#(x,0()) -> c_9()
          minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
          pred#(s(x)) -> c_11()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,0()) -> c_9()
            minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
            pred#(s(x)) -> c_11()
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,6,7,9,11}
        by application of
          Pre({1,2,6,7,9,11}) = {3,4,5,8,10}.
        Here rules are labelled as follows:
          1: gcd#(0(),y) -> c_1()
          2: gcd#(s(x),0()) -> c_2()
          3: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
          4: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          5: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          6: le#(0(),y) -> c_6()
          7: le#(s(x),0()) -> c_7()
          8: le#(s(x),s(y)) -> c_8(le#(x,y))
          9: minus#(x,0()) -> c_9()
          10: minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
          11: pred#(s(x)) -> c_11()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        - Weak DPs:
            gcd#(0(),y) -> c_1()
            gcd#(s(x),0()) -> c_2()
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            minus#(x,0()) -> c_9()
            pred#(s(x)) -> c_11()
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):4
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
             -->_2 le#(s(x),0()) -> c_7():9
             -->_2 le#(0(),y) -> c_6():8
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
             -->_2 minus#(x,0()) -> c_9():10
             -->_1 gcd#(0(),y) -> c_1():6
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
             -->_2 minus#(x,0()) -> c_9():10
             -->_1 gcd#(0(),y) -> c_1():6
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:le#(s(x),s(y)) -> c_8(le#(x,y))
             -->_1 le#(s(x),0()) -> c_7():9
             -->_1 le#(0(),y) -> c_6():8
             -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):4
          
          5:S:minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
             -->_1 pred#(s(x)) -> c_11():11
             -->_2 minus#(x,0()) -> c_9():10
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
          
          6:W:gcd#(0(),y) -> c_1()
             
          
          7:W:gcd#(s(x),0()) -> c_2()
             
          
          8:W:le#(0(),y) -> c_6()
             
          
          9:W:le#(s(x),0()) -> c_7()
             
          
          10:W:minus#(x,0()) -> c_9()
             
          
          11:W:pred#(s(x)) -> c_11()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: gcd#(s(x),0()) -> c_2()
          6: gcd#(0(),y) -> c_1()
          10: minus#(x,0()) -> c_9()
          11: pred#(s(x)) -> c_11()
          8: le#(0(),y) -> c_6()
          9: le#(s(x),0()) -> c_7()
** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):4
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:le#(s(x),s(y)) -> c_8(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):4
          
          5:S:minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(pred#(minus(x,y)),minus#(x,y)):5
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          minus#(x,s(y)) -> c_10(minus#(x,y))
** Step 1.b:6: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          4: le#(s(x),s(y)) -> c_8(le#(x,y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 1.b:6.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_8) = {1},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {minus,pred,gcd#,if_gcd#,le#,minus#,pred#}
        TcT has computed the following interpretation:
                p(0) = 0                                       
            p(false) = 0                                       
              p(gcd) = 2                                       
           p(if_gcd) = 2 + x1*x2 + 2*x1*x3 + 2*x1^2 + x2^2 + x3
               p(le) = 0                                       
            p(minus) = x1                                      
             p(pred) = x1                                      
                p(s) = 1 + x1                                  
             p(true) = 0                                       
             p(gcd#) = x1 + x1^2 + x2^2                        
          p(if_gcd#) = 1 + x2^2 + x3^2                         
              p(le#) = x2                                      
           p(minus#) = 2                                       
            p(pred#) = x1^2                                    
              p(c_1) = 0                                       
              p(c_2) = 0                                       
              p(c_3) = x1 + x2                                 
              p(c_4) = x1 + x2                                 
              p(c_5) = x1 + x2                                 
              p(c_6) = 0                                       
              p(c_7) = 1                                       
              p(c_8) = x1                                      
              p(c_9) = 0                                       
             p(c_10) = x1                                      
             p(c_11) = 1                                       
        
        Following rules are strictly oriented:
        le#(s(x),s(y)) = 1 + y        
                       > y            
                       = c_8(le#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
                   gcd#(s(x),s(y)) =  3 + 3*x + x^2 + 2*y + y^2               
                                   >= 3 + 3*x + x^2 + 2*y + y^2               
                                   =  c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
        
        if_gcd#(false(),s(x),s(y)) =  3 + 2*x + x^2 + 2*y + y^2               
                                   >= 3 + 2*x + x^2 + y + y^2                 
                                   =  c_4(gcd#(minus(y,x),s(x)),minus#(y,x))  
        
         if_gcd#(true(),s(x),s(y)) =  3 + 2*x + x^2 + 2*y + y^2               
                                   >= 3 + x + x^2 + 2*y + y^2                 
                                   =  c_5(gcd#(minus(x,y),s(y)),minus#(x,y))  
        
                    minus#(x,s(y)) =  2                                       
                                   >= 2                                       
                                   =  c_10(minus#(x,y))                       
        
                      minus(x,0()) =  x                                       
                                   >= x                                       
                                   =  x                                       
        
                     minus(x,s(y)) =  x                                       
                                   >= x                                       
                                   =  pred(minus(x,y))                        
        
                        pred(s(x)) =  1 + x                                   
                                   >= x                                       
                                   =  x                                       
        
*** Step 1.b:6.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak DPs:
            le#(s(x),s(y)) -> c_8(le#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak DPs:
            le#(s(x),s(y)) -> c_8(le#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):5
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:minus#(x,s(y)) -> c_10(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
          
          5:W:le#(s(x),s(y)) -> c_8(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: le#(s(x),s(y)) -> c_8(le#(x,y))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x))
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:S:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          3:S:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)),le#(y,x)):1
          
          4:S:minus#(x,s(y)) -> c_10(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
*** Step 1.b:6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          3: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          4: minus#(x,s(y)) -> c_10(minus#(x,y))
          
        Consider the set of all dependency pairs
          1: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
          2: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          3: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          4: minus#(x,s(y)) -> c_10(minus#(x,y))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2,3,4}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:6.b:3.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_3) = {1},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {minus,pred,gcd#,if_gcd#,le#,minus#,pred#}
        TcT has computed the following interpretation:
                p(0) = 1                        
            p(false) = 0                        
              p(gcd) = 0                        
           p(if_gcd) = 1 + 2*x1 + 2*x1*x2 + 2*x3
               p(le) = 0                        
            p(minus) = x1                       
             p(pred) = x1                       
                p(s) = 1 + x1                   
             p(true) = 0                        
             p(gcd#) = 3 + x1 + 2*x1*x2 + x2    
          p(if_gcd#) = 3 + x2 + 2*x2*x3 + x3    
              p(le#) = x1                       
           p(minus#) = 1 + 2*x2                 
            p(pred#) = x1^2                     
              p(c_1) = 0                        
              p(c_2) = 1                        
              p(c_3) = x1                       
              p(c_4) = 1 + x1 + x2              
              p(c_5) = 1 + x1 + x2              
              p(c_6) = 1                        
              p(c_7) = 1                        
              p(c_8) = 0                        
              p(c_9) = 0                        
             p(c_10) = 1 + x1                   
             p(c_11) = 0                        
        
        Following rules are strictly oriented:
        if_gcd#(false(),s(x),s(y)) = 7 + 3*x + 2*x*y + 3*y                 
                                   > 6 + 3*x + 2*x*y + 3*y                 
                                   = c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
        
         if_gcd#(true(),s(x),s(y)) = 7 + 3*x + 2*x*y + 3*y                 
                                   > 6 + 3*x + 2*x*y + 3*y                 
                                   = c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
        
                    minus#(x,s(y)) = 3 + 2*y                               
                                   > 2 + 2*y                               
                                   = c_10(minus#(x,y))                     
        
        
        Following rules are (at-least) weakly oriented:
        gcd#(s(x),s(y)) =  7 + 3*x + 2*x*y + 3*y          
                        >= 7 + 3*x + 2*x*y + 3*y          
                        =  c_3(if_gcd#(le(y,x),s(x),s(y)))
        
           minus(x,0()) =  x                              
                        >= x                              
                        =  x                              
        
          minus(x,s(y)) =  x                              
                        >= x                              
                        =  pred(minus(x,y))               
        
             pred(s(x)) =  1 + x                          
                        >= x                              
                        =  x                              
        
**** Step 1.b:6.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
        - Weak DPs:
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
            if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
            if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
            minus#(x,s(y)) -> c_10(minus#(x,y))
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
             -->_1 if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y)):3
             -->_1 if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x)):2
          
          2:W:if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y))):1
          
          3:W:if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_10(minus#(x,y)):4
             -->_1 gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y))):1
          
          4:W:minus#(x,s(y)) -> c_10(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_10(minus#(x,y)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: gcd#(s(x),s(y)) -> c_3(if_gcd#(le(y,x),s(x),s(y)))
          3: if_gcd#(true(),s(x),s(y)) -> c_5(gcd#(minus(x,y),s(y)),minus#(x,y))
          2: if_gcd#(false(),s(x),s(y)) -> c_4(gcd#(minus(y,x),s(x)),minus#(y,x))
          4: minus#(x,s(y)) -> c_10(minus#(x,y))
**** Step 1.b:6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
        - Signature:
            {gcd/2,if_gcd/3,le/2,minus/2,pred/1,gcd#/2,if_gcd#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0
            ,c_2/0,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {gcd#,if_gcd#,le#,minus#,pred#} and constructors {0,false
            ,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))