* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod,le,minus,mod,pred} and constructors {0,false,s ,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod,le,minus,mod,pred} and constructors {0,false,s ,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod,le,minus,mod,pred} and constructors {0,false,s ,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs if_mod#(false(),s(x),s(y)) -> c_1() if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(0(),y) -> c_8() mod#(s(x),0()) -> c_9() mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) pred#(s(x)) -> c_11() Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(false(),s(x),s(y)) -> c_1() if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(0(),y) -> c_8() mod#(s(x),0()) -> c_9() mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) pred#(s(x)) -> c_11() - Weak TRS: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x if_mod#(false(),s(x),s(y)) -> c_1() if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(0(),y) -> c_8() mod#(s(x),0()) -> c_9() mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) pred#(s(x)) -> c_11() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(false(),s(x),s(y)) -> c_1() if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(0(),y) -> c_8() mod#(s(x),0()) -> c_9() mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) pred#(s(x)) -> c_11() - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,6,8,9,11} by application of Pre({1,3,4,6,8,9,11}) = {2,5,7,10}. Here rules are labelled as follows: 1: if_mod#(false(),s(x),s(y)) -> c_1() 2: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) 3: le#(0(),y) -> c_3() 4: le#(s(x),0()) -> c_4() 5: le#(s(x),s(y)) -> c_5(le#(x,y)) 6: minus#(x,0()) -> c_6() 7: minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) 8: mod#(0(),y) -> c_8() 9: mod#(s(x),0()) -> c_9() 10: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) 11: pred#(s(x)) -> c_11() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak DPs: if_mod#(false(),s(x),s(y)) -> c_1() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() minus#(x,0()) -> c_6() mod#(0(),y) -> c_8() mod#(s(x),0()) -> c_9() pred#(s(x)) -> c_11() - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4 -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3 -->_1 mod#(0(),y) -> c_8():9 -->_2 minus#(x,0()) -> c_6():8 2:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),0()) -> c_4():7 -->_1 le#(0(),y) -> c_3():6 -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 3:S:minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) -->_1 pred#(s(x)) -> c_11():11 -->_2 minus#(x,0()) -> c_6():8 -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3 4:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_2 le#(s(x),0()) -> c_4():7 -->_2 le#(0(),y) -> c_3():6 -->_1 if_mod#(false(),s(x),s(y)) -> c_1():5 -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 5:W:if_mod#(false(),s(x),s(y)) -> c_1() 6:W:le#(0(),y) -> c_3() 7:W:le#(s(x),0()) -> c_4() 8:W:minus#(x,0()) -> c_6() 9:W:mod#(0(),y) -> c_8() 10:W:mod#(s(x),0()) -> c_9() 11:W:pred#(s(x)) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 10: mod#(s(x),0()) -> c_9() 9: mod#(0(),y) -> c_8() 8: minus#(x,0()) -> c_6() 11: pred#(s(x)) -> c_11() 5: if_mod#(false(),s(x),s(y)) -> c_1() 6: le#(0(),y) -> c_3() 7: le#(s(x),0()) -> c_4() ** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/2,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):4 -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3 2:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 3:S:minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)) -->_2 minus#(x,s(y)) -> c_7(pred#(minus(x,y)),minus#(x,y)):3 4:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,s(y)) -> c_7(minus#(x,y)) ** Step 1.b:6: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: le#(s(x),s(y)) -> c_5(le#(x,y)) The strictly oriented rules are moved into the weak component. *** Step 1.b:6.a:1: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_10) = {1,2} Following symbols are considered usable: {le,minus,pred,if_mod#,le#,minus#,mod#,pred#} TcT has computed the following interpretation: p(0) = [0] [0] [1] p(false) = [1] [0] [0] p(if_mod) = [0] [0] [0] p(le) = [0 0 1] [0 0 0] [0] [0 0 1] x1 + [0 0 1] x2 + [0] [0 0 0] [1 0 0] [0] p(minus) = [1 0 0] [0 0 0] [0] [1 1 1] x1 + [1 0 1] x2 + [0] [0 0 1] [0 0 0] [0] p(mod) = [0] [0] [0] p(pred) = [1 0 0] [0] [1 0 0] x1 + [0] [0 0 1] [0] p(s) = [1 1 1] [0] [0 0 1] x1 + [1] [0 0 1] [1] p(true) = [1] [1] [0] p(if_mod#) = [0 0 0] [1 0 0] [0 1 1] [1] [1 0 0] x1 + [0 1 0] x2 + [0 0 0] x3 + [1] [1 1 0] [1 0 0] [0 0 0] [0] p(le#) = [0 0 1] [0] [1 0 0] x2 + [0] [0 0 1] [0] p(minus#) = [0 1 0] [0] [0 0 0] x1 + [1] [0 0 1] [1] p(mod#) = [1 0 1] [0 1 1] [0] [1 1 0] x1 + [0 0 1] x2 + [1] [0 0 0] [1 0 1] [0] p(pred#) = [0] [0] [0] p(c_1) = [0] [0] [0] p(c_2) = [1 0 0] [1 1 0] [0] [0 0 0] x1 + [0 1 1] x2 + [1] [0 0 0] [0 0 1] [1] p(c_3) = [0] [0] [0] p(c_4) = [0] [0] [0] p(c_5) = [1 0 0] [0] [1 1 0] x1 + [0] [0 0 0] [1] p(c_6) = [0] [0] [0] p(c_7) = [1 0 0] [0] [0 0 0] x1 + [0] [0 0 0] [0] p(c_8) = [0] [0] [0] p(c_9) = [0] [0] [0] p(c_10) = [1 0 0] [1 0 0] [0] [0 1 0] x1 + [1 1 0] x2 + [1] [0 0 0] [0 0 0] [0] p(c_11) = [0] [0] [0] Following rules are strictly oriented: le#(s(x),s(y)) = [0 0 1] [1] [1 1 1] y + [0] [0 0 1] [1] > [0 0 1] [0] [1 0 1] y + [0] [0 0 0] [1] = c_5(le#(x,y)) Following rules are (at-least) weakly oriented: if_mod#(true(),s(x),s(y)) = [1 1 1] [0 0 2] [3] [0 0 1] x + [0 0 0] y + [3] [1 1 1] [0 0 0] [2] >= [1 1 1] [0 0 2] [3] [0 0 1] x + [0 0 0] y + [3] [0 0 1] [0 0 0] [2] = c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) = [0 1 0] [0] [0 0 0] x + [1] [0 0 1] [1] >= [0 1 0] [0] [0 0 0] x + [0] [0 0 0] [0] = c_7(minus#(x,y)) mod#(s(x),s(y)) = [1 1 2] [0 0 2] [3] [1 1 2] x + [0 0 1] y + [3] [0 0 0] [1 1 2] [1] >= [1 1 2] [0 0 2] [3] [1 0 2] x + [0 0 1] y + [3] [0 0 0] [0 0 0] [0] = c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) le(0(),y) = [0 0 0] [1] [0 0 1] y + [1] [1 0 0] [0] >= [1] [1] [0] = true() le(s(x),0()) = [0 0 1] [1] [0 0 1] x + [2] [0 0 0] [0] >= [1] [0] [0] = false() le(s(x),s(y)) = [0 0 1] [0 0 0] [1] [0 0 1] x + [0 0 1] y + [2] [0 0 0] [1 1 1] [0] >= [0 0 1] [0 0 0] [0] [0 0 1] x + [0 0 1] y + [0] [0 0 0] [1 0 0] [0] = le(x,y) minus(x,0()) = [1 0 0] [0] [1 1 1] x + [1] [0 0 1] [0] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x minus(x,s(y)) = [1 0 0] [0 0 0] [0] [1 1 1] x + [1 1 2] y + [1] [0 0 1] [0 0 0] [0] >= [1 0 0] [0] [1 0 0] x + [0] [0 0 1] [0] = pred(minus(x,y)) pred(s(x)) = [1 1 1] [0] [1 1 1] x + [0] [0 0 1] [1] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x *** Step 1.b:6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):3 -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):2 2:S:minus#(x,s(y)) -> c_7(minus#(x,y)) -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):2 3:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):4 -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 4:W:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: le#(s(x),s(y)) -> c_5(le#(x,y)) *** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)):3 -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):2 2:S:minus#(x,s(y)) -> c_7(minus#(x,y)) -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):2 3:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y)),le#(y,x)) -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) *** Step 1.b:6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: minus#(x,s(y)) -> c_7(minus#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 1.b:6.b:3.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) minus#(x,s(y)) -> c_7(minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_7) = {1}, uargs(c_10) = {1} Following symbols are considered usable: {minus,pred,if_mod#,le#,minus#,mod#,pred#} TcT has computed the following interpretation: p(0) = 0 p(false) = 1 p(if_mod) = 2 + 4*x1*x3 + x1^2 + 4*x3 p(le) = 0 p(minus) = x1 p(mod) = 1 + 2*x1 + x1^2 + 4*x2^2 p(pred) = x1 p(s) = 1 + x1 p(true) = 0 p(if_mod#) = 6 + 2*x2*x3 p(le#) = 2 + x1 + 4*x1*x2 p(minus#) = 1 + x2 p(mod#) = 6 + 2*x1*x2 p(pred#) = 1 + 2*x1^2 p(c_1) = 0 p(c_2) = 1 + x1 + x2 p(c_3) = 0 p(c_4) = 1 p(c_5) = 1 p(c_6) = 1 p(c_7) = x1 p(c_8) = 0 p(c_9) = 0 p(c_10) = x1 p(c_11) = 1 Following rules are strictly oriented: minus#(x,s(y)) = 2 + y > 1 + y = c_7(minus#(x,y)) Following rules are (at-least) weakly oriented: if_mod#(true(),s(x),s(y)) = 8 + 2*x + 2*x*y + 2*y >= 8 + 2*x + 2*x*y + y = c_2(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) = 8 + 2*x + 2*x*y + 2*y >= 8 + 2*x + 2*x*y + 2*y = c_10(if_mod#(le(y,x),s(x),s(y))) minus(x,0()) = x >= x = x minus(x,s(y)) = x >= x = pred(minus(x,y)) pred(s(x)) = 1 + x >= x = x **** Step 1.b:6.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak DPs: minus#(x,s(y)) -> c_7(minus#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak DPs: minus#(x,s(y)) -> c_7(minus#(x,y)) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(x,s(y)) -> c_7(minus#(x,y)):3 -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))):2 2:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 3:W:minus#(x,s(y)) -> c_7(minus#(x,y)) -->_1 minus#(x,s(y)) -> c_7(minus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: minus#(x,s(y)) -> c_7(minus#(x,y)) **** Step 1.b:6.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/2,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))):2 2:S:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y)),minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) **** Step 1.b:6.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) Consider the set of all dependency pairs 1: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) 2: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {2} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. ***** Step 1.b:6.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_10) = {1} Following symbols are considered usable: {le,minus,pred,if_mod#,le#,minus#,mod#,pred#} TcT has computed the following interpretation: p(0) = [0] p(false) = [1] p(if_mod) = [8] x2 + [1] x3 + [4] p(le) = [1] p(minus) = [1] x1 + [0] p(mod) = [1] x1 + [1] x2 + [2] p(pred) = [1] x1 + [0] p(s) = [1] x1 + [2] p(true) = [1] p(if_mod#) = [4] x1 + [1] x2 + [9] x3 + [1] p(le#) = [0] p(minus#) = [2] x2 + [1] p(mod#) = [1] x1 + [9] x2 + [7] p(pred#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] p(c_7) = [8] p(c_8) = [0] p(c_9) = [0] p(c_10) = [1] x1 + [0] p(c_11) = [0] Following rules are strictly oriented: mod#(s(x),s(y)) = [1] x + [9] y + [27] > [1] x + [9] y + [25] = c_10(if_mod#(le(y,x),s(x),s(y))) Following rules are (at-least) weakly oriented: if_mod#(true(),s(x),s(y)) = [1] x + [9] y + [25] >= [1] x + [9] y + [25] = c_2(mod#(minus(x,y),s(y))) le(0(),y) = [1] >= [1] = true() le(s(x),0()) = [1] >= [1] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(x,s(y)) = [1] x + [0] >= [1] x + [0] = pred(minus(x,y)) pred(s(x)) = [1] x + [2] >= [1] x + [0] = x ***** Step 1.b:6.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) - Weak DPs: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:6.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) -->_1 mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))):2 2:W:mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) -->_1 if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: if_mod#(true(),s(x),s(y)) -> c_2(mod#(minus(x,y),s(y))) 2: mod#(s(x),s(y)) -> c_10(if_mod#(le(y,x),s(x),s(y))) ***** Step 1.b:6.b:3.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> pred(minus(x,y)) pred(s(x)) -> x - Signature: {if_mod/3,le/2,minus/2,mod/2,pred/1,if_mod#/3,le#/2,minus#/2,mod#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0 ,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/0,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {if_mod#,le#,minus#,mod#,pred#} and constructors {0,false ,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))