* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
app(l,nil()) -> l
app(cons(x,l),k) -> cons(x,app(l,k))
app(nil(),k) -> k
minus(x,0()) -> x
minus(minus(x,y),z) -> minus(x,plus(y,z))
minus(s(x),s(y)) -> minus(x,y)
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
sum(cons(x,nil())) -> cons(x,nil())
- Signature:
{app/2,minus/2,plus/2,quot/2,sum/1} / {0/0,cons/2,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {app,minus,plus,quot,sum} and constructors {0,cons,nil,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
app(l,nil()) -> l
app(cons(x,l),k) -> cons(x,app(l,k))
app(nil(),k) -> k
minus(x,0()) -> x
minus(minus(x,y),z) -> minus(x,plus(y,z))
minus(s(x),s(y)) -> minus(x,y)
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
sum(cons(x,nil())) -> cons(x,nil())
- Signature:
{app/2,minus/2,plus/2,quot/2,sum/1} / {0/0,cons/2,nil/0,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {app,minus,plus,quot,sum} and constructors {0,cons,nil,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
app(y,z){y -> cons(x,y)} =
app(cons(x,y),z) ->^+ cons(x,app(y,z))
= C[app(y,z) = app(y,z){}]
WORST_CASE(Omega(n^1),?)