* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x),y,y) -> f'(y,x,s(x)) - Signature: {f/1,f'/3} / {g/1,h/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,f'} and constructors {g,h,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(g(x)) -> g(f(f(x))) f(h(x)) -> h(g(x)) f'(s(x),y,y) -> f'(y,x,s(x)) - Signature: {f/1,f'/3} / {g/1,h/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,f'} and constructors {g,h,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x){x -> g(x)} = f(g(x)) ->^+ g(f(f(x))) = C[f(x) = f(x){}] WORST_CASE(Omega(n^1),?)