* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x),y,y) -> f'(y,x,s(x))
- Signature:
{f/1,f'/3} / {g/1,h/1,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,f'} and constructors {g,h,s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x),y,y) -> f'(y,x,s(x))
- Signature:
{f/1,f'/3} / {g/1,h/1,s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,f'} and constructors {g,h,s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
f(x){x -> g(x)} =
f(g(x)) ->^+ g(f(f(x)))
= C[f(x) = f(x){}]
WORST_CASE(Omega(n^1),?)