0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 294 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 10 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 383 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 180 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
g(x, y) → x
g(x, y) → y
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
g(x, y) → x [1]
g(x, y) → y [1]
f(0, 1, x) → f(s(x), x, x) [1]
f(x, y, s(z)) → s(f(0, 1, z)) [1]
g(x, y) → x [1]
g(x, y) → y [1]
f(0, 1, x) → f(s(x), x, x) [1]
f(x, y, s(z)) → s(f(0, 1, z)) [1]
g :: g → g → g f :: 0:1:s → 0:1:s → 0:1:s → 0:1:s 0 :: 0:1:s 1 :: 0:1:s s :: 0:1:s → 0:1:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
g
f
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
1 => 1
const => 0
f(z', z'', z1) -{ 1 }→ f(1 + x, x, x) :|: x >= 0, z'' = 1, z1 = x, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z) :|: z >= 0, z' = x, z'' = y, x >= 0, y >= 0, z1 = 1 + z
g(z', z'') -{ 1 }→ x :|: z' = x, z'' = y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ y :|: z' = x, z'' = y, x >= 0, y >= 0
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
{ g } { f } |
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
g: runtime: ?, size: O(n1) [z' + z''] |
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
g: runtime: O(1) [1], size: O(n1) [z' + z''] |
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
g: runtime: O(1) [1], size: O(n1) [z' + z''] |
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
g: runtime: O(1) [1], size: O(n1) [z' + z''] f: runtime: ?, size: O(1) [0] |
f(z', z'', z1) -{ 1 }→ f(1 + z1, z1, z1) :|: z1 >= 0, z'' = 1, z' = 0
f(z', z'', z1) -{ 1 }→ 1 + f(0, 1, z1 - 1) :|: z1 - 1 >= 0, z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z' :|: z' >= 0, z'' >= 0
g(z', z'') -{ 1 }→ z'' :|: z' >= 0, z'' >= 0
g: runtime: O(1) [1], size: O(n1) [z' + z''] f: runtime: O(n1) [1 + 2·z1], size: O(1) [0] |