(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(0, z0) → c5
MOD(s(z0), 0) → c6
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_MOD(false, s(z0), s(z1)) → c9
S tuples:
LE(0, z0) → c
LE(s(z0), 0) → c1
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(z0, 0) → c3
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(0, z0) → c5
MOD(s(z0), 0) → c6
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_MOD(false, s(z0), s(z1)) → c9
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 6 trailing nodes:
IF_MOD(false, s(z0), s(z1)) → c9
LE(0, z0) → c
MOD(s(z0), 0) → c6
MOD(0, z0) → c5
MINUS(z0, 0) → c3
LE(s(z0), 0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
le, minus, mod, if_mod
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
mod(0, z0) → 0
mod(s(z0), 0) → 0
mod(s(z0), s(z1)) → if_mod(le(z1, z0), s(z0), s(z1))
if_mod(true, s(z0), s(z1)) → mod(minus(z0, z1), s(z1))
if_mod(false, s(z0), s(z1)) → s(z0)
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF_MOD(x1, x2, x3)) = [2]x2
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = [1]
POL(MOD(x1, x2)) = [2]x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(9) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c2(LE(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(IF_MOD(x1, x2, x3)) = [1] + x2·x3
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(MOD(x1, x2)) = [1] + x2 + x1·x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = [2]
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(IF_MOD(x1, x2, x3)) = x22
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = [1] + x1
POL(MOD(x1, x2)) = x12
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(false) = 0
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
S tuples:none
K tuples:
IF_MOD(true, s(z0), s(z1)) → c8(MOD(minus(z0, z1), s(z1)), MINUS(z0, z1))
MOD(s(z0), s(z1)) → c7(IF_MOD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
le, minus
Defined Pair Symbols:
LE, MINUS, MOD, IF_MOD
Compound Symbols:
c2, c4, c7, c8
(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(16) BOUNDS(1, 1)