* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          minus(x,y){x -> s(x),y -> s(y)} =
            minus(s(x),s(y)) ->^+ minus(x,y)
              = C[minus(x,y) = minus(x,y){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(quot) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(0) = [4]                  
            p(minus) = [1] x1 + [2]         
             p(plus) = [6] x1 + [6] x2 + [0]
             p(quot) = [1] x1 + [4] x2 + [4]
                p(s) = [1] x1 + [4]         
          
          Following rules are strictly oriented:
              minus(x,0()) = [1] x + [2]         
                           > [1] x + [0]         
                           = x                   
          
          minus(s(x),s(y)) = [1] x + [6]         
                           > [1] x + [2]         
                           = minus(x,y)          
          
               plus(0(),y) = [6] y + [24]        
                           > [1] y + [0]         
                           = y                   
          
              plus(s(x),y) = [6] x + [6] y + [24]
                           > [6] x + [6] y + [4] 
                           = s(plus(x,y))        
          
            quot(0(),s(y)) = [4] y + [24]        
                           > [4]                 
                           = 0()                 
          
          
          Following rules are (at-least) weakly oriented:
          plus(minus(x,s(0())),minus(y,s(s(z)))) =  [6] x + [6] y + [24]                  
                                                 >= [6] x + [6] y + [24]                  
                                                 =  plus(minus(y,s(s(z))),minus(x,s(0())))
          
                                 quot(s(x),s(y)) =  [1] x + [4] y + [24]                  
                                                 >= [1] x + [4] y + [26]                  
                                                 =  s(quot(minus(x,y),s(y)))              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(quot) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {minus,plus,quot}
        TcT has computed the following interpretation:
              p(0) = [0]                    
          p(minus) = [1] x_1 + [0]          
           p(plus) = [1] x_1 + [1] x_2 + [0]
           p(quot) = [8] x_1 + [10]         
              p(s) = [1] x_1 + [2]          
        
        Following rules are strictly oriented:
        quot(s(x),s(y)) = [8] x + [26]            
                        > [8] x + [12]            
                        = s(quot(minus(x,y),s(y)))
        
        
        Following rules are (at-least) weakly oriented:
                                  minus(x,0()) =  [1] x + [0]                           
                                               >= [1] x + [0]                           
                                               =  x                                     
        
                              minus(s(x),s(y)) =  [1] x + [2]                           
                                               >= [1] x + [0]                           
                                               =  minus(x,y)                            
        
                                   plus(0(),y) =  [1] y + [0]                           
                                               >= [1] y + [0]                           
                                               =  y                                     
        
        plus(minus(x,s(0())),minus(y,s(s(z)))) =  [1] x + [1] y + [0]                   
                                               >= [1] x + [1] y + [0]                   
                                               =  plus(minus(y,s(s(z))),minus(x,s(0())))
        
                                  plus(s(x),y) =  [1] x + [1] y + [2]                   
                                               >= [1] x + [1] y + [2]                   
                                               =  s(plus(x,y))                          
        
                                quot(0(),s(y)) =  [10]                                  
                                               >= [0]                                   
                                               =  0()                                   
        
** Step 1.b:3: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(quot) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {minus,plus,quot}
        TcT has computed the following interpretation:
              p(0) = [3]                            
                     [0]                            
                     [0]                            
          p(minus) = [1 0 0]       [0 0 0]       [0]
                     [2 2 2] x_1 + [0 0 2] x_2 + [0]
                     [2 1 1]       [0 0 0]       [1]
           p(plus) = [0 0 2]       [2 1 0]       [1]
                     [0 1 0] x_1 + [0 1 0] x_2 + [0]
                     [0 0 1]       [0 0 1]       [1]
           p(quot) = [1 0 0]       [0 0 0]       [2]
                     [0 0 0] x_1 + [1 1 2] x_2 + [0]
                     [1 0 0]       [0 3 0]       [0]
              p(s) = [1 0 0]       [1]              
                     [0 1 0] x_1 + [0]              
                     [0 0 1]       [1]              
        
        Following rules are strictly oriented:
        plus(minus(x,s(0())),minus(y,s(s(z)))) = [4 2 2]     [4 2 2]     [0 0 2]     [7]
                                                 [2 2 2] x + [2 2 2] y + [0 0 2] z + [6]
                                                 [2 1 1]     [2 1 1]     [0 0 0]     [3]
                                               > [4 2 2]     [4 2 2]     [0 0 0]     [5]
                                                 [2 2 2] x + [2 2 2] y + [0 0 2] z + [6]
                                                 [2 1 1]     [2 1 1]     [0 0 0]     [3]
                                               = plus(minus(y,s(s(z))),minus(x,s(0()))) 
        
        
        Following rules are (at-least) weakly oriented:
            minus(x,0()) =  [1 0 0]     [0]            
                            [2 2 2] x + [0]            
                            [2 1 1]     [1]            
                         >= [1 0 0]     [0]            
                            [0 1 0] x + [0]            
                            [0 0 1]     [0]            
                         =  x                          
        
        minus(s(x),s(y)) =  [1 0 0]     [0 0 0]     [1]
                            [2 2 2] x + [0 0 2] y + [6]
                            [2 1 1]     [0 0 0]     [4]
                         >= [1 0 0]     [0 0 0]     [0]
                            [2 2 2] x + [0 0 2] y + [0]
                            [2 1 1]     [0 0 0]     [1]
                         =  minus(x,y)                 
        
             plus(0(),y) =  [2 1 0]     [1]            
                            [0 1 0] y + [0]            
                            [0 0 1]     [1]            
                         >= [1 0 0]     [0]            
                            [0 1 0] y + [0]            
                            [0 0 1]     [0]            
                         =  y                          
        
            plus(s(x),y) =  [0 0 2]     [2 1 0]     [3]
                            [0 1 0] x + [0 1 0] y + [0]
                            [0 0 1]     [0 0 1]     [2]
                         >= [0 0 2]     [2 1 0]     [2]
                            [0 1 0] x + [0 1 0] y + [0]
                            [0 0 1]     [0 0 1]     [2]
                         =  s(plus(x,y))               
        
          quot(0(),s(y)) =  [0 0 0]     [5]            
                            [1 1 2] y + [3]            
                            [0 3 0]     [3]            
                         >= [3]                        
                            [0]                        
                            [0]                        
                         =  0()                        
        
         quot(s(x),s(y)) =  [1 0 0]     [0 0 0]     [3]
                            [0 0 0] x + [1 1 2] y + [3]
                            [1 0 0]     [0 3 0]     [1]
                         >= [1 0 0]     [0 0 0]     [3]
                            [0 0 0] x + [1 1 2] y + [3]
                            [1 0 0]     [0 3 0]     [1]
                         =  s(quot(minus(x,y),s(y)))   
        
** Step 1.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))