* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: minus(x,y){x -> s(x),y -> s(y)} = minus(s(x),s(y)) ->^+ minus(x,y) = C[minus(x,y) = minus(x,y){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(quot) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [4] p(minus) = [1] x1 + [2] p(plus) = [6] x1 + [6] x2 + [0] p(quot) = [1] x1 + [4] x2 + [4] p(s) = [1] x1 + [4] Following rules are strictly oriented: minus(x,0()) = [1] x + [2] > [1] x + [0] = x minus(s(x),s(y)) = [1] x + [6] > [1] x + [2] = minus(x,y) plus(0(),y) = [6] y + [24] > [1] y + [0] = y plus(s(x),y) = [6] x + [6] y + [24] > [6] x + [6] y + [4] = s(plus(x,y)) quot(0(),s(y)) = [4] y + [24] > [4] = 0() Following rules are (at-least) weakly oriented: plus(minus(x,s(0())),minus(y,s(s(z)))) = [6] x + [6] y + [24] >= [6] x + [6] y + [24] = plus(minus(y,s(s(z))),minus(x,s(0()))) quot(s(x),s(y)) = [1] x + [4] y + [24] >= [1] x + [4] y + [26] = s(quot(minus(x,y),s(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(quot) = {1}, uargs(s) = {1} Following symbols are considered usable: {minus,plus,quot} TcT has computed the following interpretation: p(0) = [0] p(minus) = [1] x_1 + [0] p(plus) = [1] x_1 + [1] x_2 + [0] p(quot) = [8] x_1 + [10] p(s) = [1] x_1 + [2] Following rules are strictly oriented: quot(s(x),s(y)) = [8] x + [26] > [8] x + [12] = s(quot(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [2] >= [1] x + [0] = minus(x,y) plus(0(),y) = [1] y + [0] >= [1] y + [0] = y plus(minus(x,s(0())),minus(y,s(s(z)))) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = plus(minus(y,s(s(z))),minus(x,s(0()))) plus(s(x),y) = [1] x + [1] y + [2] >= [1] x + [1] y + [2] = s(plus(x,y)) quot(0(),s(y)) = [10] >= [0] = 0() ** Step 1.b:3: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(quot) = {1}, uargs(s) = {1} Following symbols are considered usable: {minus,plus,quot} TcT has computed the following interpretation: p(0) = [3] [0] [0] p(minus) = [1 0 0] [0 0 0] [0] [2 2 2] x_1 + [0 0 2] x_2 + [0] [2 1 1] [0 0 0] [1] p(plus) = [0 0 2] [2 1 0] [1] [0 1 0] x_1 + [0 1 0] x_2 + [0] [0 0 1] [0 0 1] [1] p(quot) = [1 0 0] [0 0 0] [2] [0 0 0] x_1 + [1 1 2] x_2 + [0] [1 0 0] [0 3 0] [0] p(s) = [1 0 0] [1] [0 1 0] x_1 + [0] [0 0 1] [1] Following rules are strictly oriented: plus(minus(x,s(0())),minus(y,s(s(z)))) = [4 2 2] [4 2 2] [0 0 2] [7] [2 2 2] x + [2 2 2] y + [0 0 2] z + [6] [2 1 1] [2 1 1] [0 0 0] [3] > [4 2 2] [4 2 2] [0 0 0] [5] [2 2 2] x + [2 2 2] y + [0 0 2] z + [6] [2 1 1] [2 1 1] [0 0 0] [3] = plus(minus(y,s(s(z))),minus(x,s(0()))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1 0 0] [0] [2 2 2] x + [0] [2 1 1] [1] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x minus(s(x),s(y)) = [1 0 0] [0 0 0] [1] [2 2 2] x + [0 0 2] y + [6] [2 1 1] [0 0 0] [4] >= [1 0 0] [0 0 0] [0] [2 2 2] x + [0 0 2] y + [0] [2 1 1] [0 0 0] [1] = minus(x,y) plus(0(),y) = [2 1 0] [1] [0 1 0] y + [0] [0 0 1] [1] >= [1 0 0] [0] [0 1 0] y + [0] [0 0 1] [0] = y plus(s(x),y) = [0 0 2] [2 1 0] [3] [0 1 0] x + [0 1 0] y + [0] [0 0 1] [0 0 1] [2] >= [0 0 2] [2 1 0] [2] [0 1 0] x + [0 1 0] y + [0] [0 0 1] [0 0 1] [2] = s(plus(x,y)) quot(0(),s(y)) = [0 0 0] [5] [1 1 2] y + [3] [0 3 0] [3] >= [3] [0] [0] = 0() quot(s(x),s(y)) = [1 0 0] [0 0 0] [3] [0 0 0] x + [1 1 2] y + [3] [1 0 0] [0 3 0] [1] >= [1 0 0] [0 0 0] [3] [0 0 0] x + [1 1 2] y + [3] [1 0 0] [0 3 0] [1] = s(quot(minus(x,y),s(y))) ** Step 1.b:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))