* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil()) -> nil() rev1(x,cons(y,l)) -> rev1(y,l) rev1(0(),nil()) -> 0() rev1(s(x),nil()) -> s(x) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil()) -> nil() - Signature: {rev/1,rev1/2,rev2/2} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {0,cons,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev(nil()) -> nil() rev1(x,cons(y,l)) -> rev1(y,l) rev1(0(),nil()) -> 0() rev1(s(x),nil()) -> s(x) rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) rev2(x,nil()) -> nil() - Signature: {rev/1,rev1/2,rev2/2} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {0,cons,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: rev1(x,z){z -> cons(y,z)} = rev1(x,cons(y,z)) ->^+ rev1(y,z) = C[rev1(y,z) = rev1(x,z){x -> y}] WORST_CASE(Omega(n^1),?)