0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳8 CpxRNTS
↳9 CompleteCoflocoProof (⇔, 63 ms)
↳10 BOUNDS(1, 1)
f(s(x), y, y) → f(y, x, s(x))
f(s(x), y, y) → f(y, x, s(x)) [1]
f(s(x), y, y) → f(y, x, s(x)) [1]
f :: s → s → s → f s :: s → s |
f(v0, v1, v2) → null_f [0]
null_f, const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
null_f => 0
const => 0
f(z, z', z'') -{ 1 }→ f(y, x, 1 + x) :|: z'' = y, x >= 0, y >= 0, z = 1 + x, z' = y
f(z, z', z'') -{ 0 }→ 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0
eq(start(V, V1, V2),0,[f(V, V1, V2, Out)],[V >= 0,V1 >= 0,V2 >= 0]). eq(f(V, V1, V2, Out),1,[f(V3, V4, 1 + V4, Ret)],[Out = Ret,V2 = V3,V4 >= 0,V3 >= 0,V = 1 + V4,V1 = V3]). eq(f(V, V1, V2, Out),0,[],[Out = 0,V5 >= 0,V2 = V6,V7 >= 0,V = V5,V1 = V7,V6 >= 0]). input_output_vars(f(V,V1,V2,Out),[V,V1,V2],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. recursive : [f/4]
1. non_recursive : [start/3]
#### Obtained direct recursion through partial evaluation
0. SCC is partially evaluated into f/4
1. SCC is partially evaluated into start/3
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations f/4
* CE 4 is refined into CE [5]
* CE 3 is refined into CE [6]
### Cost equations --> "Loop" of f/4
* CEs [6] --> Loop 4
* CEs [5] --> Loop 5
### Ranking functions of CR f(V,V1,V2,Out)
#### Partial ranking functions of CR f(V,V1,V2,Out)
### Specialization of cost equations start/3
* CE 2 is refined into CE [7]
### Cost equations --> "Loop" of start/3
* CEs [7] --> Loop 6
### Ranking functions of CR start(V,V1,V2)
#### Partial ranking functions of CR start(V,V1,V2)
Computing Bounds
=====================================
#### Cost of chains of f(V,V1,V2,Out):
* Chain [5]: 0
with precondition: [Out=0,V>=0,V1>=0,V2>=0]
* Chain [4,5]: 1
with precondition: [Out=0,V1=V2,V>=1,V1>=0]
#### Cost of chains of start(V,V1,V2):
* Chain [6]: 1
with precondition: [V>=0,V1>=0,V2>=0]
Closed-form bounds of start(V,V1,V2):
-------------------------------------
* Chain [6] with precondition: [V>=0,V1>=0,V2>=0]
- Upper bound: 1
- Complexity: constant
### Maximum cost of start(V,V1,V2): 1
Asymptotic class: constant
* Total analysis performed in 40 ms.