* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) - Signature: {app/2,plus/2,pred/1,sum/1} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {app,plus,pred,sum} and constructors {0,cons,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) - Signature: {app/2,plus/2,pred/1,sum/1} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {app,plus,pred,sum} and constructors {0,cons,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: app(y,z){y -> cons(x,y)} = app(cons(x,y),z) ->^+ cons(x,app(y,z)) = C[app(y,z) = app(y,z){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) - Signature: {app/2,plus/2,pred/1,sum/1} / {0/0,cons/2,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {app,plus,pred,sum} and constructors {0,cons,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(app(l,cons(x,cons(y,k)))) -> c_7(sum#(app(l,sum(cons(x,cons(y,k))))) ,app#(l,sum(cons(x,cons(y,k)))) ,sum#(cons(x,cons(y,k)))) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() sum#(plus(cons(0(),x),cons(y,l))) -> c_10(pred#(sum(cons(s(x),cons(y,l)))),sum#(cons(s(x),cons(y,l)))) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(app(l,cons(x,cons(y,k)))) -> c_7(sum#(app(l,sum(cons(x,cons(y,k))))) ,app#(l,sum(cons(x,cons(y,k)))) ,sum#(cons(x,cons(y,k)))) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() sum#(plus(cons(0(),x),cons(y,l))) -> c_10(pred#(sum(cons(s(x),cons(y,l)))),sum#(cons(s(x),cons(y,l)))) - Weak TRS: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,4,6,8} by application of Pre({1,3,4,6,8}) = {2,5,7}. Here rules are labelled as follows: 1: app#(l,nil()) -> c_1() 2: app#(cons(x,l),k) -> c_2(app#(l,k)) 3: app#(nil(),k) -> c_3() 4: plus#(0(),y) -> c_4() 5: plus#(s(x),y) -> c_5(plus#(x,y)) 6: pred#(cons(s(x),nil())) -> c_6() 7: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) 8: sum#(cons(x,nil())) -> c_9() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak DPs: app#(l,nil()) -> c_1() app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,nil())) -> c_9() - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(nil(),k) -> c_3():5 -->_1 app#(l,nil()) -> c_1():4 -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 2:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(0(),y) -> c_4():6 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,nil())) -> c_9():8 -->_2 plus#(0(),y) -> c_4():6 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):3 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 4:W:app#(l,nil()) -> c_1() 5:W:app#(nil(),k) -> c_3() 6:W:plus#(0(),y) -> c_4() 7:W:pred#(cons(s(x),nil())) -> c_6() 8:W:sum#(cons(x,nil())) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: pred#(cons(s(x),nil())) -> c_6() 8: sum#(cons(x,nil())) -> c_9() 6: plus#(0(),y) -> c_4() 4: app#(l,nil()) -> c_1() 5: app#(nil(),k) -> c_3() ** Step 1.b:5: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} Problem (S) - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} *** Step 1.b:5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** Step 1.b:5.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: app#(cons(x,l),k) -> c_2(app#(l,k)) *** Step 1.b:5.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: app#(cons(x,l),k) -> c_2(app#(l,k)) The strictly oriented rules are moved into the weak component. **** Step 1.b:5.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = [4] p(app) = [1] p(cons) = [1] x2 + [10] p(nil) = [1] p(plus) = [1] x1 + [1] x2 + [0] p(pred) = [8] x1 + [1] p(s) = [1] p(sum) = [1] p(app#) = [1] x1 + [8] x2 + [8] p(plus#) = [1] x1 + [2] p(pred#) = [1] p(sum#) = [1] x1 + [1] p(c_1) = [2] p(c_2) = [1] x1 + [8] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] x2 + [2] x3 + [1] p(c_8) = [2] x1 + [8] x2 + [1] p(c_9) = [1] p(c_10) = [4] x1 + [2] x2 + [0] Following rules are strictly oriented: app#(cons(x,l),k) = [8] k + [1] l + [18] > [8] k + [1] l + [16] = c_2(app#(l,k)) Following rules are (at-least) weakly oriented: **** Step 1.b:5.a:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: app#(cons(x,l),k) -> c_2(app#(l,k)) **** Step 1.b:5.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak DPs: app#(cons(x,l),k) -> c_2(app#(l,k)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):2 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1 3:W:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: app#(cons(x,l),k) -> c_2(app#(l,k)) *** Step 1.b:5.b:2: Decompose WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} Problem (S) - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} **** Step 1.b:5.b:2.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: plus#(s(x),y) -> c_5(plus#(x,y)) The strictly oriented rules are moved into the weak component. ***** Step 1.b:5.b:2.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {plus,app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = 0 p(app) = 2*x1 + x1*x2 + x1^2 + 2*x2 p(cons) = 1 + x1 + x2 p(nil) = 1 p(plus) = x1 + x2 p(pred) = 4 + 2*x1 + 4*x1^2 p(s) = 1 + x1 p(sum) = 1 + x1^2 p(app#) = 0 p(plus#) = 5 + x1 + 2*x2 p(pred#) = x1 p(sum#) = 7 + 2*x1^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = 1 p(c_4) = 0 p(c_5) = x1 p(c_6) = 0 p(c_7) = x1 p(c_8) = 1 + x1 + x2 p(c_9) = 0 p(c_10) = 0 Following rules are strictly oriented: plus#(s(x),y) = 6 + x + 2*y > 5 + x + 2*y = c_5(plus#(x,y)) Following rules are (at-least) weakly oriented: sum#(cons(x,cons(y,l))) = 15 + 8*l + 4*l*x + 4*l*y + 2*l^2 + 8*x + 4*x*y + 2*x^2 + 8*y + 2*y^2 >= 15 + 4*l + 4*l*x + 4*l*y + 2*l^2 + 5*x + 4*x*y + 2*x^2 + 6*y + 2*y^2 = c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) plus(0(),y) = y >= y = y plus(s(x),y) = 1 + x + y >= 1 + x + y = s(plus(x,y)) ***** Step 1.b:5.b:2.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:5.b:2.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):2 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) 1: plus#(s(x),y) -> c_5(plus#(x,y)) ***** Step 1.b:5.b:2.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 1.b:5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak DPs: plus#(s(x),y) -> c_5(plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(x),y) -> c_5(plus#(x,y)) **** Step 1.b:5.b:2.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) **** Step 1.b:5.b:2.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) The strictly oriented rules are moved into the weak component. ***** Step 1.b:5.b:2.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {plus,app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = [1] p(app) = [1] p(cons) = [1] x1 + [1] x2 + [3] p(nil) = [2] p(plus) = [1] x1 + [1] x2 + [1] p(pred) = [1] x1 + [4] p(s) = [1] x1 + [8] p(sum) = [2] p(app#) = [1] x1 + [4] x2 + [0] p(plus#) = [2] x2 + [0] p(pred#) = [1] p(sum#) = [4] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [2] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [0] p(c_7) = [1] x1 + [8] x2 + [1] p(c_8) = [1] x1 + [4] p(c_9) = [0] p(c_10) = [1] x1 + [1] x2 + [4] Following rules are strictly oriented: sum#(cons(x,cons(y,l))) = [4] l + [4] x + [4] y + [24] > [4] l + [4] x + [4] y + [20] = c_8(sum#(cons(plus(x,y),l))) Following rules are (at-least) weakly oriented: plus(0(),y) = [1] y + [2] >= [1] y + [0] = y plus(s(x),y) = [1] x + [1] y + [9] >= [1] x + [1] y + [9] = s(plus(x,y)) ***** Step 1.b:5.b:2.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:5.b:2.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) ***** Step 1.b:5.b:2.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} - Obligation: innermost runtime complexity wrt. defined symbols {app#,plus#,pred#,sum#} and constructors {0,cons,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))