0 CpxTRS
↳1 DependencyGraphProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 704 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 146 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 371 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 61 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 289 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 142 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^2)
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
app(cons(x, l), k) → cons(x, app(l, k))
plus(s(x), y) → s(plus(x, y))
sum(cons(x, nil)) → cons(x, nil)
app(nil, k) → k
app(l, nil) → l
plus(0, y) → y
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
app(cons(x, l), k) → cons(x, app(l, k)) [1]
plus(s(x), y) → s(plus(x, y)) [1]
sum(cons(x, nil)) → cons(x, nil) [1]
app(nil, k) → k [1]
app(l, nil) → l [1]
plus(0, y) → y [1]
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l)) [1]
app(cons(x, l), k) → cons(x, app(l, k)) [1]
plus(s(x), y) → s(plus(x, y)) [1]
sum(cons(x, nil)) → cons(x, nil) [1]
app(nil, k) → k [1]
app(l, nil) → l [1]
plus(0, y) → y [1]
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l)) [1]
app :: cons:nil → cons:nil → cons:nil cons :: s:0 → cons:nil → cons:nil plus :: s:0 → s:0 → s:0 s :: s:0 → s:0 sum :: cons:nil → cons:nil nil :: cons:nil 0 :: s:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
app
sum
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
0 => 0
app(z, z') -{ 1 }→ k :|: k >= 0, z' = k, z = 0
app(z, z') -{ 1 }→ l :|: z = l, l >= 0, z' = 0
app(z, z') -{ 1 }→ 1 + x + app(l, k) :|: x >= 0, l >= 0, z = 1 + x + l, k >= 0, z' = k
plus(z, z') -{ 1 }→ y :|: y >= 0, z = 0, z' = y
plus(z, z') -{ 1 }→ 1 + plus(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + x + 0 :|: x >= 0, z = 1 + x + 0
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + x + app(l, z') :|: x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
{ app } { plus } { sum } |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + x + app(l, z') :|: x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + x + app(l, z') :|: x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: ?, size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 1 }→ 1 + x + app(l, z') :|: x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] plus: runtime: ?, size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 2 }→ sum(1 + (1 + plus(x', y)) + l) :|: x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 + z }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 3 + x' }→ sum(1 + (1 + s'') + l) :|: s'' >= 0, s'' <= 1 * x' + 1 * y, x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z], size: O(n1) [z + z'] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 + z }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 3 + x' }→ sum(1 + (1 + s'') + l) :|: s'' >= 0, s'' <= 1 * x' + 1 * y, x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z], size: O(n1) [z + z'] sum: runtime: ?, size: O(n1) [z] |
app(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
app(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
app(z, z') -{ 2 + l }→ 1 + x + s :|: s >= 0, s <= 1 * l + 1 * z', x >= 0, l >= 0, z = 1 + x + l, z' >= 0
plus(z, z') -{ 1 }→ z' :|: z' >= 0, z = 0
plus(z, z') -{ 1 + z }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
sum(z) -{ 2 }→ sum(1 + y + l) :|: y >= 0, l >= 0, z = 1 + 0 + (1 + y + l)
sum(z) -{ 3 + x' }→ sum(1 + (1 + s'') + l) :|: s'' >= 0, s'' <= 1 * x' + 1 * y, x' >= 0, y >= 0, z = 1 + (1 + x') + (1 + y + l), l >= 0
sum(z) -{ 1 }→ 1 + (z - 1) + 0 :|: z - 1 >= 0
app: runtime: O(n1) [1 + z], size: O(n1) [z + z'] plus: runtime: O(n1) [1 + z], size: O(n1) [z + z'] sum: runtime: O(n2) [3 + 2·z + z2], size: O(n1) [z] |