Runtime Complexity TRS:
The TRS R consists of the following rules:

f(h(x), y) → h(f(y, f(x, h(f(a, a)))))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


f'(h'(x), y) → h'(f'(y, f'(x, h'(f'(a', a')))))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
f'(h'(x), y) → h'(f'(y, f'(x, h'(f'(a', a')))))

Types:
f' :: h':a' → h':a' → h':a'
h' :: h':a' → h':a'
a' :: h':a'
_hole_h':a'1 :: h':a'
_gen_h':a'2 :: Nat → h':a'


Heuristically decided to analyse the following defined symbols:
f'


Rules:
f'(h'(x), y) → h'(f'(y, f'(x, h'(f'(a', a')))))

Types:
f' :: h':a' → h':a' → h':a'
h' :: h':a' → h':a'
a' :: h':a'
_hole_h':a'1 :: h':a'
_gen_h':a'2 :: Nat → h':a'

Generator Equations:
_gen_h':a'2(0) ⇔ a'
_gen_h':a'2(+(x, 1)) ⇔ h'(_gen_h':a'2(x))

The following defined symbols remain to be analysed:
f'


Could not prove a rewrite lemma for the defined symbol f'.

The following conjecture could not be proven:

f'(_gen_h':a'2(+(1, _n4)), _gen_h':a'2(b)) →? _*3


Rules:
f'(h'(x), y) → h'(f'(y, f'(x, h'(f'(a', a')))))

Types:
f' :: h':a' → h':a' → h':a'
h' :: h':a' → h':a'
a' :: h':a'
_hole_h':a'1 :: h':a'
_gen_h':a'2 :: Nat → h':a'

Generator Equations:
_gen_h':a'2(0) ⇔ a'
_gen_h':a'2(+(x, 1)) ⇔ h'(_gen_h':a'2(x))

No more defined symbols left to analyse.