Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(x)) → s(s(f(p(s(x)))))
f(0) → 0
p(s(x)) → x
Renamed function symbols to avoid clashes with predefined symbol.
Runtime Complexity TRS:
The TRS R consists of the following rules:
f'(s'(x)) → s'(s'(f'(p'(s'(x)))))
f'(0') → 0'
p'(s'(x)) → x
Infered types.
Rules:
f'(s'(x)) → s'(s'(f'(p'(s'(x)))))
f'(0') → 0'
p'(s'(x)) → x
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
p' :: s':0' → s':0'
0' :: s':0'
_hole_s':0'1 :: s':0'
_gen_s':0'2 :: Nat → s':0'
Heuristically decided to analyse the following defined symbols:
f'
Rules:
f'(s'(x)) → s'(s'(f'(p'(s'(x)))))
f'(0') → 0'
p'(s'(x)) → x
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
p' :: s':0' → s':0'
0' :: s':0'
_hole_s':0'1 :: s':0'
_gen_s':0'2 :: Nat → s':0'
Generator Equations:
_gen_s':0'2(0) ⇔ 0'
_gen_s':0'2(+(x, 1)) ⇔ s'(_gen_s':0'2(x))
The following defined symbols remain to be analysed:
f'
Proved the following rewrite lemma:
f'(_gen_s':0'2(_n4)) → _gen_s':0'2(*(2, _n4)), rt ∈ Ω(1 + n4)
Induction Base:
f'(_gen_s':0'2(0)) →RΩ(1)
0'
Induction Step:
f'(_gen_s':0'2(+(_$n5, 1))) →RΩ(1)
s'(s'(f'(p'(s'(_gen_s':0'2(_$n5)))))) →RΩ(1)
s'(s'(f'(_gen_s':0'2(_$n5)))) →IH
s'(s'(_gen_s':0'2(*(2, _$n5))))
We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Rules:
f'(s'(x)) → s'(s'(f'(p'(s'(x)))))
f'(0') → 0'
p'(s'(x)) → x
Types:
f' :: s':0' → s':0'
s' :: s':0' → s':0'
p' :: s':0' → s':0'
0' :: s':0'
_hole_s':0'1 :: s':0'
_gen_s':0'2 :: Nat → s':0'
Lemmas:
f'(_gen_s':0'2(_n4)) → _gen_s':0'2(*(2, _n4)), rt ∈ Ω(1 + n4)
Generator Equations:
_gen_s':0'2(0) ⇔ 0'
_gen_s':0'2(+(x, 1)) ⇔ s'(_gen_s':0'2(x))
No more defined symbols left to analyse.
The lowerbound Ω(n) was proven with the following lemma:
f'(_gen_s':0'2(_n4)) → _gen_s':0'2(*(2, _n4)), rt ∈ Ω(1 + n4)