Runtime Complexity TRS:
The TRS R consists of the following rules:

active(U11(tt, V2)) → mark(U12(isNat(V2)))
active(U12(tt)) → mark(tt)
active(U21(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(U42(isNat(N), M, N))
active(U42(tt, M, N)) → mark(s(plus(N, M)))
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(isNat(V1), V2))
active(isNat(s(V1))) → mark(U21(isNat(V1)))
active(plus(N, 0)) → mark(U31(isNat(N), N))
active(plus(N, s(M))) → mark(U41(isNat(M), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X)) → U21(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X)) → mark(U21(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNat(X)) → isNat(proper(X))
proper(U21(X)) → U21(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNat(ok(X)) → ok(isNat(X))
U21(ok(X)) → ok(U21(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'


Heuristically decided to analyse the following defined symbols:
active', U12', isNat', U42', s', plus', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
U12' < active'
isNat' < active'
U42' < active'
s' < active'
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
U12' < proper'
isNat' < proper'
U42' < proper'
s' < proper'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U12', active', isNat', U42', s', plus', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
U12' < active'
isNat' < active'
U42' < active'
s' < active'
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
U12' < proper'
isNat' < proper'
U42' < proper'
s' < proper'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)

Induction Base:
U12'(_gen_tt':mark':0':ok'3(+(1, 0)))

Induction Step:
U12'(_gen_tt':mark':0':ok'3(+(1, +(_$n6, 1)))) →RΩ(1)
mark'(U12'(_gen_tt':mark':0':ok'3(+(1, _$n6)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
isNat', active', U42', s', plus', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
isNat' < active'
U42' < active'
s' < active'
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
isNat' < proper'
U42' < proper'
s' < proper'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Could not prove a rewrite lemma for the defined symbol isNat'.


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U42', active', s', plus', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
U42' < active'
s' < active'
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
U42' < proper'
s' < proper'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)

Induction Base:
U42'(_gen_tt':mark':0':ok'3(+(1, 0)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c))

Induction Step:
U42'(_gen_tt':mark':0':ok'3(+(1, +(_$n1832, 1))), _gen_tt':mark':0':ok'3(_b3168), _gen_tt':mark':0':ok'3(_c3169)) →RΩ(1)
mark'(U42'(_gen_tt':mark':0':ok'3(+(1, _$n1832)), _gen_tt':mark':0':ok'3(_b3168), _gen_tt':mark':0':ok'3(_c3169))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
s', active', plus', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
s' < active'
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
s' < proper'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)

Induction Base:
s'(_gen_tt':mark':0':ok'3(+(1, 0)))

Induction Step:
s'(_gen_tt':mark':0':ok'3(+(1, +(_$n6298, 1)))) →RΩ(1)
mark'(s'(_gen_tt':mark':0':ok'3(+(1, _$n6298)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
plus', active', U11', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
plus' < active'
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
plus' < proper'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)

Induction Base:
plus'(_gen_tt':mark':0':ok'3(+(1, 0)), _gen_tt':mark':0':ok'3(b))

Induction Step:
plus'(_gen_tt':mark':0':ok'3(+(1, +(_$n8494, 1))), _gen_tt':mark':0':ok'3(_b10178)) →RΩ(1)
mark'(plus'(_gen_tt':mark':0':ok'3(+(1, _$n8494)), _gen_tt':mark':0':ok'3(_b10178))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U11', active', U21', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
U11' < active'
U21' < active'
U31' < active'
U41' < active'
active' < top'
U11' < proper'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)

Induction Base:
U11'(_gen_tt':mark':0':ok'3(+(1, 0)), _gen_tt':mark':0':ok'3(b))

Induction Step:
U11'(_gen_tt':mark':0':ok'3(+(1, +(_$n12594, 1))), _gen_tt':mark':0':ok'3(_b14386)) →RΩ(1)
mark'(U11'(_gen_tt':mark':0':ok'3(+(1, _$n12594)), _gen_tt':mark':0':ok'3(_b14386))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U21', active', U31', U41', proper', top'

They will be analysed ascendingly in the following order:
U21' < active'
U31' < active'
U41' < active'
active' < top'
U21' < proper'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)

Induction Base:
U21'(_gen_tt':mark':0':ok'3(+(1, 0)))

Induction Step:
U21'(_gen_tt':mark':0':ok'3(+(1, +(_$n16843, 1)))) →RΩ(1)
mark'(U21'(_gen_tt':mark':0':ok'3(+(1, _$n16843)))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U31', active', U41', proper', top'

They will be analysed ascendingly in the following order:
U31' < active'
U41' < active'
active' < top'
U31' < proper'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)

Induction Base:
U31'(_gen_tt':mark':0':ok'3(+(1, 0)), _gen_tt':mark':0':ok'3(b))

Induction Step:
U31'(_gen_tt':mark':0':ok'3(+(1, +(_$n19545, 1))), _gen_tt':mark':0':ok'3(_b21877)) →RΩ(1)
mark'(U31'(_gen_tt':mark':0':ok'3(+(1, _$n19545)), _gen_tt':mark':0':ok'3(_b21877))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
U41', active', proper', top'

They will be analysed ascendingly in the following order:
U41' < active'
active' < top'
U41' < proper'
proper' < top'


Proved the following rewrite lemma:
U41'(_gen_tt':mark':0':ok'3(+(1, _n24402)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n24402)

Induction Base:
U41'(_gen_tt':mark':0':ok'3(+(1, 0)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c))

Induction Step:
U41'(_gen_tt':mark':0':ok'3(+(1, +(_$n24403, 1))), _gen_tt':mark':0':ok'3(_b28493), _gen_tt':mark':0':ok'3(_c28494)) →RΩ(1)
mark'(U41'(_gen_tt':mark':0':ok'3(+(1, _$n24403)), _gen_tt':mark':0':ok'3(_b28493), _gen_tt':mark':0':ok'3(_c28494))) →IH
mark'(_*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)
U41'(_gen_tt':mark':0':ok'3(+(1, _n24402)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n24402)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'


Could not prove a rewrite lemma for the defined symbol active'.


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)
U41'(_gen_tt':mark':0':ok'3(+(1, _n24402)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n24402)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'


Could not prove a rewrite lemma for the defined symbol proper'.


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)
U41'(_gen_tt':mark':0':ok'3(+(1, _n24402)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n24402)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

The following defined symbols remain to be analysed:
top'


Could not prove a rewrite lemma for the defined symbol top'.


Rules:
active'(U11'(tt', V2)) → mark'(U12'(isNat'(V2)))
active'(U12'(tt')) → mark'(tt')
active'(U21'(tt')) → mark'(tt')
active'(U31'(tt', N)) → mark'(N)
active'(U41'(tt', M, N)) → mark'(U42'(isNat'(N), M, N))
active'(U42'(tt', M, N)) → mark'(s'(plus'(N, M)))
active'(isNat'(0')) → mark'(tt')
active'(isNat'(plus'(V1, V2))) → mark'(U11'(isNat'(V1), V2))
active'(isNat'(s'(V1))) → mark'(U21'(isNat'(V1)))
active'(plus'(N, 0')) → mark'(U31'(isNat'(N), N))
active'(plus'(N, s'(M))) → mark'(U41'(isNat'(M), M, N))
active'(U11'(X1, X2)) → U11'(active'(X1), X2)
active'(U12'(X)) → U12'(active'(X))
active'(U21'(X)) → U21'(active'(X))
active'(U31'(X1, X2)) → U31'(active'(X1), X2)
active'(U41'(X1, X2, X3)) → U41'(active'(X1), X2, X3)
active'(U42'(X1, X2, X3)) → U42'(active'(X1), X2, X3)
active'(s'(X)) → s'(active'(X))
active'(plus'(X1, X2)) → plus'(active'(X1), X2)
active'(plus'(X1, X2)) → plus'(X1, active'(X2))
U11'(mark'(X1), X2) → mark'(U11'(X1, X2))
U12'(mark'(X)) → mark'(U12'(X))
U21'(mark'(X)) → mark'(U21'(X))
U31'(mark'(X1), X2) → mark'(U31'(X1, X2))
U41'(mark'(X1), X2, X3) → mark'(U41'(X1, X2, X3))
U42'(mark'(X1), X2, X3) → mark'(U42'(X1, X2, X3))
s'(mark'(X)) → mark'(s'(X))
plus'(mark'(X1), X2) → mark'(plus'(X1, X2))
plus'(X1, mark'(X2)) → mark'(plus'(X1, X2))
proper'(U11'(X1, X2)) → U11'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(U12'(X)) → U12'(proper'(X))
proper'(isNat'(X)) → isNat'(proper'(X))
proper'(U21'(X)) → U21'(proper'(X))
proper'(U31'(X1, X2)) → U31'(proper'(X1), proper'(X2))
proper'(U41'(X1, X2, X3)) → U41'(proper'(X1), proper'(X2), proper'(X3))
proper'(U42'(X1, X2, X3)) → U42'(proper'(X1), proper'(X2), proper'(X3))
proper'(s'(X)) → s'(proper'(X))
proper'(plus'(X1, X2)) → plus'(proper'(X1), proper'(X2))
proper'(0') → ok'(0')
U11'(ok'(X1), ok'(X2)) → ok'(U11'(X1, X2))
U12'(ok'(X)) → ok'(U12'(X))
isNat'(ok'(X)) → ok'(isNat'(X))
U21'(ok'(X)) → ok'(U21'(X))
U31'(ok'(X1), ok'(X2)) → ok'(U31'(X1, X2))
U41'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U41'(X1, X2, X3))
U42'(ok'(X1), ok'(X2), ok'(X3)) → ok'(U42'(X1, X2, X3))
s'(ok'(X)) → ok'(s'(X))
plus'(ok'(X1), ok'(X2)) → ok'(plus'(X1, X2))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: tt':mark':0':ok' → tt':mark':0':ok'
U11' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
tt' :: tt':mark':0':ok'
mark' :: tt':mark':0':ok' → tt':mark':0':ok'
U12' :: tt':mark':0':ok' → tt':mark':0':ok'
isNat' :: tt':mark':0':ok' → tt':mark':0':ok'
U21' :: tt':mark':0':ok' → tt':mark':0':ok'
U31' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U41' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
U42' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
s' :: tt':mark':0':ok' → tt':mark':0':ok'
plus' :: tt':mark':0':ok' → tt':mark':0':ok' → tt':mark':0':ok'
0' :: tt':mark':0':ok'
proper' :: tt':mark':0':ok' → tt':mark':0':ok'
ok' :: tt':mark':0':ok' → tt':mark':0':ok'
top' :: tt':mark':0':ok' → top'
_hole_tt':mark':0':ok'1 :: tt':mark':0':ok'
_hole_top'2 :: top'
_gen_tt':mark':0':ok'3 :: Nat → tt':mark':0':ok'

Lemmas:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)
U42'(_gen_tt':mark':0':ok'3(+(1, _n1831)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n1831)
s'(_gen_tt':mark':0':ok'3(+(1, _n6297))) → _*4, rt ∈ Ω(n6297)
plus'(_gen_tt':mark':0':ok'3(+(1, _n8493)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n8493)
U11'(_gen_tt':mark':0':ok'3(+(1, _n12593)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n12593)
U21'(_gen_tt':mark':0':ok'3(+(1, _n16842))) → _*4, rt ∈ Ω(n16842)
U31'(_gen_tt':mark':0':ok'3(+(1, _n19544)), _gen_tt':mark':0':ok'3(b)) → _*4, rt ∈ Ω(n19544)
U41'(_gen_tt':mark':0':ok'3(+(1, _n24402)), _gen_tt':mark':0':ok'3(b), _gen_tt':mark':0':ok'3(c)) → _*4, rt ∈ Ω(n24402)

Generator Equations:
_gen_tt':mark':0':ok'3(0) ⇔ tt'
_gen_tt':mark':0':ok'3(+(x, 1)) ⇔ mark'(_gen_tt':mark':0':ok'3(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
U12'(_gen_tt':mark':0':ok'3(+(1, _n5))) → _*4, rt ∈ Ω(n5)