Runtime Complexity TRS:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST


Renamed function symbols to avoid clashes with predefined symbol.


Runtime Complexity TRS:
The TRS R consists of the following rules:


active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Rewrite Strategy: INNERMOST


Infered types.


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'


Heuristically decided to analyse the following defined symbols:
active', __', and', isNePal', proper', top'

They will be analysed ascendingly in the following order:
__' < active'
and' < active'
isNePal' < active'
active' < top'
__' < proper'
and' < proper'
isNePal' < proper'
proper' < top'


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
__', active', and', isNePal', proper', top'

They will be analysed ascendingly in the following order:
__' < active'
and' < active'
isNePal' < active'
active' < top'
__' < proper'
and' < proper'
isNePal' < proper'
proper' < top'


Proved the following rewrite lemma:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)

Induction Base:
__'(___gen_mark':nil':tt':ok'3(+(1, 0)), ___gen_mark':nil':tt':ok'3(b))

Induction Step:
__'(___gen_mark':nil':tt':ok'3(+(1, +(___$n6, 1))), ___gen_mark':nil':tt':ok'3(___b826)) →RΩ(1)
mark'(__'(___gen_mark':nil':tt':ok'3(+(1, ___$n6)), ___gen_mark':nil':tt':ok'3(___b826))) →IH
mark'(___*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
and', active', isNePal', proper', top'

They will be analysed ascendingly in the following order:
and' < active'
isNePal' < active'
active' < top'
and' < proper'
isNePal' < proper'
proper' < top'


Proved the following rewrite lemma:
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)

Induction Base:
and'(___gen_mark':nil':tt':ok'3(+(1, 0)), ___gen_mark':nil':tt':ok'3(b))

Induction Step:
and'(___gen_mark':nil':tt':ok'3(+(1, +(___$n1827, 1))), ___gen_mark':nil':tt':ok'3(___b2755)) →RΩ(1)
mark'(and'(___gen_mark':nil':tt':ok'3(+(1, ___$n1827)), ___gen_mark':nil':tt':ok'3(___b2755))) →IH
mark'(___*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
isNePal', active', proper', top'

They will be analysed ascendingly in the following order:
isNePal' < active'
active' < top'
isNePal' < proper'
proper' < top'


Proved the following rewrite lemma:
isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___n3796))) → ___*4, rt ∈ Ω(__n3796)

Induction Base:
isNePal'(___gen_mark':nil':tt':ok'3(+(1, 0)))

Induction Step:
isNePal'(___gen_mark':nil':tt':ok'3(+(1, +(___$n3797, 1)))) →RΩ(1)
mark'(isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___$n3797)))) →IH
mark'(___*4)

We have rt ∈ Ω(n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)
isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___n3796))) → ___*4, rt ∈ Ω(__n3796)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
active', proper', top'

They will be analysed ascendingly in the following order:
active' < top'
proper' < top'


Could not prove a rewrite lemma for the defined symbol active'.


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)
isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___n3796))) → ___*4, rt ∈ Ω(__n3796)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
proper', top'

They will be analysed ascendingly in the following order:
proper' < top'


Could not prove a rewrite lemma for the defined symbol proper'.


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)
isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___n3796))) → ___*4, rt ∈ Ω(__n3796)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

The following defined symbols remain to be analysed:
top'


Could not prove a rewrite lemma for the defined symbol top'.


Rules:
active'(__'(__'(X, Y), Z)) → mark'(__'(X, __'(Y, Z)))
active'(__'(X, nil')) → mark'(X)
active'(__'(nil', X)) → mark'(X)
active'(and'(tt', X)) → mark'(X)
active'(isNePal'(__'(I, __'(P, I)))) → mark'(tt')
active'(__'(X1, X2)) → __'(active'(X1), X2)
active'(__'(X1, X2)) → __'(X1, active'(X2))
active'(and'(X1, X2)) → and'(active'(X1), X2)
active'(isNePal'(X)) → isNePal'(active'(X))
__'(mark'(X1), X2) → mark'(__'(X1, X2))
__'(X1, mark'(X2)) → mark'(__'(X1, X2))
and'(mark'(X1), X2) → mark'(and'(X1, X2))
isNePal'(mark'(X)) → mark'(isNePal'(X))
proper'(__'(X1, X2)) → __'(proper'(X1), proper'(X2))
proper'(nil') → ok'(nil')
proper'(and'(X1, X2)) → and'(proper'(X1), proper'(X2))
proper'(tt') → ok'(tt')
proper'(isNePal'(X)) → isNePal'(proper'(X))
__'(ok'(X1), ok'(X2)) → ok'(__'(X1, X2))
and'(ok'(X1), ok'(X2)) → ok'(and'(X1, X2))
isNePal'(ok'(X)) → ok'(isNePal'(X))
top'(mark'(X)) → top'(proper'(X))
top'(ok'(X)) → top'(active'(X))

Types:
active' :: mark':nil':tt':ok' → mark':nil':tt':ok'
__' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
mark' :: mark':nil':tt':ok' → mark':nil':tt':ok'
nil' :: mark':nil':tt':ok'
and' :: mark':nil':tt':ok' → mark':nil':tt':ok' → mark':nil':tt':ok'
tt' :: mark':nil':tt':ok'
isNePal' :: mark':nil':tt':ok' → mark':nil':tt':ok'
proper' :: mark':nil':tt':ok' → mark':nil':tt':ok'
ok' :: mark':nil':tt':ok' → mark':nil':tt':ok'
top' :: mark':nil':tt':ok' → top'
___hole_mark':nil':tt':ok'1 :: mark':nil':tt':ok'
___hole_top'2 :: top'
___gen_mark':nil':tt':ok'3 :: Nat → mark':nil':tt':ok'

Lemmas:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)
and'(___gen_mark':nil':tt':ok'3(+(1, ___n1826)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n1826)
isNePal'(___gen_mark':nil':tt':ok'3(+(1, ___n3796))) → ___*4, rt ∈ Ω(__n3796)

Generator Equations:
___gen_mark':nil':tt':ok'3(0) ⇔ nil'
___gen_mark':nil':tt':ok'3(+(x, 1)) ⇔ mark'(___gen_mark':nil':tt':ok'3(x))

No more defined symbols left to analyse.


The lowerbound Ω(n) was proven with the following lemma:
__'(___gen_mark':nil':tt':ok'3(+(1, ___n5)), ___gen_mark':nil':tt':ok'3(b)) → ___*4, rt ∈ Ω(__n5)