(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(x(N, 0)) → mark(0)
active(x(N, s(M))) → mark(plus(x(N, M), N))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
active(x(X1, X2)) → x(active(X1), X2)
active(x(X1, X2)) → x(X1, active(X2))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
x(mark(X1), X2) → mark(x(X1, X2))
x(X1, mark(X2)) → mark(x(X1, X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(x(X1, X2)) → x(proper(X1), proper(X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
x(ok(X1), ok(X2)) → ok(x(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(tt, z0)) → c
ACTIVE(plus(z0, 0)) → c1
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(x(z0, 0)) → c3
ACTIVE(x(z0, s(z1))) → c4(PLUS(x(z0, z1), z0), X(z0, z1))
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(tt) → c22
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(0) → c24
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(and(tt, z0)) → c
ACTIVE(plus(z0, 0)) → c1
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(x(z0, 0)) → c3
ACTIVE(x(z0, s(z1))) → c4(PLUS(x(z0, z1), z0), X(z0, z1))
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(tt) → c22
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(0) → c24
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing nodes:
ACTIVE(and(tt, z0)) → c
ACTIVE(plus(z0, 0)) → c1
PROPER(0) → c24
PROPER(tt) → c22
ACTIVE(x(z0, 0)) → c3
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(PLUS(x(z0, z1), z0), X(z0, z1))
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(plus(z0, s(z1))) → c2(S(plus(z0, z1)), PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(PLUS(x(z0, z1), z0), X(z0, z1))
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c2, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper, top
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(9) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
active(plus(z0, z1)) → plus(active(z0), z1)
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
active(and(z0, z1)) → and(active(z0), z1)
x(mark(z0), z1) → mark(x(z0, z1))
active(s(z0)) → s(active(z0))
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
proper(0) → ok(0)
active(plus(z0, z1)) → plus(z0, active(z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
s(ok(z0)) → ok(s(z0))
active(x(z0, z1)) → x(active(z0), z1)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
active(and(tt, z0)) → mark(z0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
active(x(z0, 0)) → mark(0)
proper(tt) → ok(tt)
And the Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = 0
POL(S(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(X(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = [2]x1·x2 + x12
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c23(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c27(x1, x2)) = x1 + x2
POL(c28(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [2] + x1
POL(tt) = [1]
POL(x(x1, x2)) = [2]x1 + [2]x2 + x1·x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(11) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
We considered the (Usable) Rules:
active(plus(z0, z1)) → plus(active(z0), z1)
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
active(and(z0, z1)) → and(active(z0), z1)
x(mark(z0), z1) → mark(x(z0, z1))
active(s(z0)) → s(active(z0))
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
proper(0) → ok(0)
active(plus(z0, z1)) → plus(z0, active(z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
s(ok(z0)) → ok(s(z0))
active(x(z0, z1)) → x(active(z0), z1)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
active(and(tt, z0)) → mark(z0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
active(x(z0, 0)) → mark(0)
proper(tt) → ok(tt)
And the Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = x1
POL(S(x1)) = 0
POL(TOP(x1)) = x12
POL(X(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = [2]x1 + [2]x2 + x12
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c23(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c27(x1, x2)) = x1 + x2
POL(c28(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [2] + x1
POL(tt) = [2]
POL(x(x1, x2)) = [2] + [2]x1 + x2 + x1·x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(13) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
We considered the (Usable) Rules:
active(plus(z0, z1)) → plus(active(z0), z1)
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
active(and(z0, z1)) → and(active(z0), z1)
x(mark(z0), z1) → mark(x(z0, z1))
active(s(z0)) → s(active(z0))
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
proper(0) → ok(0)
active(plus(z0, z1)) → plus(z0, active(z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
s(ok(z0)) → ok(s(z0))
active(x(z0, z1)) → x(active(z0), z1)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
active(and(tt, z0)) → mark(z0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
active(x(z0, 0)) → mark(0)
proper(tt) → ok(tt)
And the Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = [3]x1
POL(S(x1)) = 0
POL(TOP(x1)) = x1 + [2]x12
POL(X(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c23(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c27(x1, x2)) = x1 + x2
POL(c28(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = [3] + x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [3] + x1
POL(tt) = [1]
POL(x(x1, x2)) = [2]x1 + x2 + x22 + [2]x1·x2
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(15) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
We considered the (Usable) Rules:
active(plus(z0, z1)) → plus(active(z0), z1)
plus(z0, mark(z1)) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
active(and(z0, z1)) → and(active(z0), z1)
x(mark(z0), z1) → mark(x(z0, z1))
active(s(z0)) → s(active(z0))
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
proper(0) → ok(0)
active(plus(z0, z1)) → plus(z0, active(z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
s(ok(z0)) → ok(s(z0))
active(x(z0, z1)) → x(active(z0), z1)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
x(z0, mark(z1)) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
active(and(tt, z0)) → mark(z0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
active(x(z0, 0)) → mark(0)
proper(tt) → ok(tt)
And the Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(PROPER(x1)) = x1
POL(S(x1)) = 0
POL(TOP(x1)) = x12
POL(X(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = [1] + x1 + x2
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c2(x1)) = x1
POL(c20(x1)) = x1
POL(c21(x1, x2, x3)) = x1 + x2 + x3
POL(c23(x1, x2, x3)) = x1 + x2 + x3
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2, x3)) = x1 + x2 + x3
POL(c27(x1, x2)) = x1 + x2
POL(c28(x1, x2)) = x1 + x2
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
POL(plus(x1, x2)) = x1 + [2]x2
POL(proper(x1)) = x1
POL(s(x1)) = [1] + x1
POL(tt) = 0
POL(x(x1, x2)) = x1 + [2]x2 + [2]x1·x2
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
S tuples:
ACTIVE(and(z0, z1)) → c5(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
and(
z0,
z1)) →
c5(
AND(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4, c5
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(s(z0)) → c8(S(active(z0)), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4, c5, c5
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
s(
z0)) →
c8(
S(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4, c5, c5, c8
(23) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c23, c25, c26, c27, c28, c2, c4, c5, c5, c8, c8
(25) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
and(
z0,
z1)) →
c21(
AND(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c23, c25, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21
(27) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c23, c25, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21
(29) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
plus(
z0,
z1)) →
c23(
PLUS(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c25, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23
(31) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c25, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
s(
z0)) →
c25(
S(
proper(
z0)),
PROPER(
z0)) by
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)), PROPER(tt))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(0)) → c25(S(ok(0)), PROPER(0))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)), PROPER(tt))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(0)) → c25(S(ok(0)), PROPER(0))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25
(35) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c26, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
x(
z0,
z1)) →
c26(
X(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0), PROPER(0))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(0), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, TOP, PROPER
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26
(39) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, TOP, PROPER
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c27, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26, c26
(41) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c27(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c27(TOP(ok(tt)), PROPER(tt))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(0)) → c27(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c27(TOP(ok(tt)), PROPER(tt))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(0)) → c27(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, TOP, PROPER
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26, c26, c27
(43) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
TOP(mark(tt)) → c27(TOP(ok(tt)))
TOP(mark(0)) → c27(TOP(ok(0)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
TOP(ok(z0)) → c28(TOP(active(z0)), ACTIVE(z0))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, TOP, PROPER
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c28, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26, c26, c27, c27
(45) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c28(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
TOP(mark(tt)) → c27(TOP(ok(tt)))
TOP(mark(0)) → c27(TOP(ok(0)))
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
K tuples:
TOP(mark(z0)) → c27(TOP(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c25(S(proper(z0)), PROPER(z0))
PROPER(x(z0, z1)) → c26(X(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(plus(z0, z1)) → c23(PLUS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c21(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26, c26, c27, c27, c28
(47) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
TOP(mark(tt)) → c27(TOP(ok(tt)))
TOP(mark(0)) → c27(TOP(ok(0)))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
S tuples:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
ACTIVE, AND, PLUS, S, X, PROPER, TOP
Compound Symbols:
c6, c7, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c2, c4, c5, c5, c8, c8, c21, c21, c23, c23, c25, c25, c26, c26, c27, c28
(49) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(plus(z0, z1)) → c6(PLUS(active(z0), z1), ACTIVE(z0))
ACTIVE(plus(z0, z1)) → c7(PLUS(z0, active(z1)), ACTIVE(z1))
ACTIVE(x(z0, z1)) → c9(X(active(z0), z1), ACTIVE(z0))
ACTIVE(x(z0, z1)) → c10(X(z0, active(z1)), ACTIVE(z1))
ACTIVE(plus(z0, s(z1))) → c2(PLUS(z0, z1))
ACTIVE(x(z0, s(z1))) → c4(X(z0, z1))
ACTIVE(and(plus(z0, 0), x1)) → c5(AND(mark(z0), x1), ACTIVE(plus(z0, 0)))
ACTIVE(and(plus(z0, s(z1)), x1)) → c5(AND(mark(s(plus(z0, z1))), x1), ACTIVE(plus(z0, s(z1))))
ACTIVE(and(x(z0, 0), x1)) → c5(AND(mark(0), x1), ACTIVE(x(z0, 0)))
ACTIVE(and(x(z0, s(z1)), x1)) → c5(AND(mark(plus(x(z0, z1), z0)), x1), ACTIVE(x(z0, s(z1))))
ACTIVE(and(and(z0, z1), x1)) → c5(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(active(z0), z1), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(plus(z0, z1), x1)) → c5(AND(plus(z0, active(z1)), x1), ACTIVE(plus(z0, z1)))
ACTIVE(and(s(z0), x1)) → c5(AND(s(active(z0)), x1), ACTIVE(s(z0)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(active(z0), z1), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(x(z0, z1), x1)) → c5(AND(x(z0, active(z1)), x1), ACTIVE(x(z0, z1)))
ACTIVE(and(and(tt, z0), x1)) → c5(AND(mark(z0), x1))
ACTIVE(s(plus(z0, 0))) → c8(S(mark(z0)), ACTIVE(plus(z0, 0)))
ACTIVE(s(plus(z0, s(z1)))) → c8(S(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
ACTIVE(s(x(z0, 0))) → c8(S(mark(0)), ACTIVE(x(z0, 0)))
ACTIVE(s(x(z0, s(z1)))) → c8(S(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
ACTIVE(s(and(z0, z1))) → c8(S(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
ACTIVE(s(plus(z0, z1))) → c8(S(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
ACTIVE(s(s(z0))) → c8(S(s(active(z0))), ACTIVE(s(z0)))
ACTIVE(s(x(z0, z1))) → c8(S(x(active(z0), z1)), ACTIVE(x(z0, z1)))
ACTIVE(s(x(z0, z1))) → c8(S(x(z0, active(z1))), ACTIVE(x(z0, z1)))
ACTIVE(s(and(tt, z0))) → c8(S(mark(z0)))
PROPER(and(x0, and(z0, z1))) → c21(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, plus(z0, z1))) → c21(AND(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(and(x0, s(z0))) → c21(AND(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(and(x0, x(z0, z1))) → c21(AND(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(and(and(z0, z1), x1)) → c21(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(plus(z0, z1), x1)) → c21(AND(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(and(s(z0), x1)) → c21(AND(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(and(x(z0, z1), x1)) → c21(AND(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(and(x0, tt)) → c21(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(x0, 0)) → c21(AND(proper(x0), ok(0)), PROPER(x0))
PROPER(and(tt, x1)) → c21(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(0, x1)) → c21(AND(ok(0), proper(x1)), PROPER(x1))
PROPER(plus(x0, and(z0, z1))) → c23(PLUS(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(plus(x0, plus(z0, z1))) → c23(PLUS(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(plus(x0, s(z0))) → c23(PLUS(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(plus(x0, x(z0, z1))) → c23(PLUS(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(plus(and(z0, z1), x1)) → c23(PLUS(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(plus(plus(z0, z1), x1)) → c23(PLUS(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(plus(s(z0), x1)) → c23(PLUS(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(plus(x(z0, z1), x1)) → c23(PLUS(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(plus(x0, tt)) → c23(PLUS(proper(x0), ok(tt)), PROPER(x0))
PROPER(plus(x0, 0)) → c23(PLUS(proper(x0), ok(0)), PROPER(x0))
PROPER(plus(tt, x1)) → c23(PLUS(ok(tt), proper(x1)), PROPER(x1))
PROPER(plus(0, x1)) → c23(PLUS(ok(0), proper(x1)), PROPER(x1))
PROPER(s(and(z0, z1))) → c25(S(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(s(plus(z0, z1))) → c25(S(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
PROPER(s(s(z0))) → c25(S(s(proper(z0))), PROPER(s(z0)))
PROPER(s(x(z0, z1))) → c25(S(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
PROPER(s(tt)) → c25(S(ok(tt)))
PROPER(s(0)) → c25(S(ok(0)))
PROPER(x(x0, and(z0, z1))) → c26(X(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(x(x0, plus(z0, z1))) → c26(X(proper(x0), plus(proper(z0), proper(z1))), PROPER(x0), PROPER(plus(z0, z1)))
PROPER(x(x0, s(z0))) → c26(X(proper(x0), s(proper(z0))), PROPER(x0), PROPER(s(z0)))
PROPER(x(x0, x(z0, z1))) → c26(X(proper(x0), x(proper(z0), proper(z1))), PROPER(x0), PROPER(x(z0, z1)))
PROPER(x(and(z0, z1), x1)) → c26(X(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(x(plus(z0, z1), x1)) → c26(X(plus(proper(z0), proper(z1)), proper(x1)), PROPER(plus(z0, z1)), PROPER(x1))
PROPER(x(s(z0), x1)) → c26(X(s(proper(z0)), proper(x1)), PROPER(s(z0)), PROPER(x1))
PROPER(x(x(z0, z1), x1)) → c26(X(x(proper(z0), proper(z1)), proper(x1)), PROPER(x(z0, z1)), PROPER(x1))
PROPER(x(x0, tt)) → c26(X(proper(x0), ok(tt)), PROPER(x0))
PROPER(x(x0, 0)) → c26(X(proper(x0), ok(0)), PROPER(x0))
PROPER(x(tt, x1)) → c26(X(ok(tt), proper(x1)), PROPER(x1))
PROPER(x(0, x1)) → c26(X(ok(0), proper(x1)), PROPER(x1))
TOP(mark(and(z0, z1))) → c27(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(plus(z0, z1))) → c27(TOP(plus(proper(z0), proper(z1))), PROPER(plus(z0, z1)))
TOP(mark(s(z0))) → c27(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(x(z0, z1))) → c27(TOP(x(proper(z0), proper(z1))), PROPER(x(z0, z1)))
TOP(ok(and(tt, z0))) → c28(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(plus(z0, 0))) → c28(TOP(mark(z0)), ACTIVE(plus(z0, 0)))
TOP(ok(plus(z0, s(z1)))) → c28(TOP(mark(s(plus(z0, z1)))), ACTIVE(plus(z0, s(z1))))
TOP(ok(x(z0, 0))) → c28(TOP(mark(0)), ACTIVE(x(z0, 0)))
TOP(ok(x(z0, s(z1)))) → c28(TOP(mark(plus(x(z0, z1), z0))), ACTIVE(x(z0, s(z1))))
TOP(ok(and(z0, z1))) → c28(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(active(z0), z1)), ACTIVE(plus(z0, z1)))
TOP(ok(plus(z0, z1))) → c28(TOP(plus(z0, active(z1))), ACTIVE(plus(z0, z1)))
TOP(ok(s(z0))) → c28(TOP(s(active(z0))), ACTIVE(s(z0)))
TOP(ok(x(z0, z1))) → c28(TOP(x(active(z0), z1)), ACTIVE(x(z0, z1)))
TOP(ok(x(z0, z1))) → c28(TOP(x(z0, active(z1))), ACTIVE(x(z0, z1)))
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
S tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
K tuples:none
Defined Rule Symbols:
active, and, plus, s, x, proper
Defined Pair Symbols:
AND, PLUS, S, X
Compound Symbols:
c11, c12, c13, c14, c15, c16, c17, c18, c19, c20
(51) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
active(and(tt, z0)) → mark(z0)
active(plus(z0, 0)) → mark(z0)
active(plus(z0, s(z1))) → mark(s(plus(z0, z1)))
active(x(z0, 0)) → mark(0)
active(x(z0, s(z1))) → mark(plus(x(z0, z1), z0))
active(and(z0, z1)) → and(active(z0), z1)
active(plus(z0, z1)) → plus(active(z0), z1)
active(plus(z0, z1)) → plus(z0, active(z1))
active(s(z0)) → s(active(z0))
active(x(z0, z1)) → x(active(z0), z1)
active(x(z0, z1)) → x(z0, active(z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
plus(mark(z0), z1) → mark(plus(z0, z1))
plus(ok(z0), ok(z1)) → ok(plus(z0, z1))
plus(z0, mark(z1)) → mark(plus(z0, z1))
s(mark(z0)) → mark(s(z0))
s(ok(z0)) → ok(s(z0))
x(mark(z0), z1) → mark(x(z0, z1))
x(ok(z0), ok(z1)) → ok(x(z0, z1))
x(z0, mark(z1)) → mark(x(z0, z1))
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(plus(z0, z1)) → plus(proper(z0), proper(z1))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(x(z0, z1)) → x(proper(z0), proper(z1))
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
S tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
AND, PLUS, S, X
Compound Symbols:
c11, c12, c13, c14, c15, c16, c17, c18, c19, c20
(53) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(mark(z0), z1) → c11(AND(z0, z1))
S(mark(z0)) → c16(S(z0))
X(z0, mark(z1)) → c19(X(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [4]x1
POL(PLUS(x1, x2)) = 0
POL(S(x1)) = x1
POL(X(x1, x2)) = x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
S tuples:
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
K tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
S(mark(z0)) → c16(S(z0))
X(z0, mark(z1)) → c19(X(z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
AND, PLUS, S, X
Compound Symbols:
c11, c12, c13, c14, c15, c16, c17, c18, c19, c20
(55) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [2]x1 + x2
POL(PLUS(x1, x2)) = [3]x1
POL(S(x1)) = [5]x1
POL(X(x1, x2)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(mark(x1)) = [5] + x1
POL(ok(x1)) = [1] + x1
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
S tuples:
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
K tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
S(mark(z0)) → c16(S(z0))
X(z0, mark(z1)) → c19(X(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
AND, PLUS, S, X
Compound Symbols:
c11, c12, c13, c14, c15, c16, c17, c18, c19, c20
(57) CdtRuleRemovalProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1 + [4]x2
POL(PLUS(x1, x2)) = [2]x1 + [2]x2
POL(S(x1)) = [5]x1
POL(X(x1, x2)) = [4]x1 + [4]x2
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1)) = x1
POL(c18(x1)) = x1
POL(c19(x1)) = x1
POL(c20(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(mark(z0)) → c16(S(z0))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(z0, mark(z1)) → c19(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
S tuples:none
K tuples:
AND(mark(z0), z1) → c11(AND(z0, z1))
S(mark(z0)) → c16(S(z0))
X(z0, mark(z1)) → c19(X(z0, z1))
AND(ok(z0), ok(z1)) → c12(AND(z0, z1))
PLUS(mark(z0), z1) → c13(PLUS(z0, z1))
PLUS(ok(z0), ok(z1)) → c15(PLUS(z0, z1))
S(ok(z0)) → c17(S(z0))
X(mark(z0), z1) → c18(X(z0, z1))
X(ok(z0), ok(z1)) → c20(X(z0, z1))
PLUS(z0, mark(z1)) → c14(PLUS(z0, z1))
Defined Rule Symbols:none
Defined Pair Symbols:
AND, PLUS, S, X
Compound Symbols:
c11, c12, c13, c14, c15, c16, c17, c18, c19, c20
(59) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(60) BOUNDS(O(1), O(1))